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Chapter 1

Introduction

1.1 Background and Motivation

The Large Space Structure (LSS) research program was originally formulated in late 1982 in re-
sponse to the increasing concern that performance robustness of Air Force LSS type system would
be inadequate to meet mission objectives. In particular, uncertainties in both system dynamics and
disturbance spectra characterizations (both time varying and stochastic uncertainty) significantly
limit the performance attainable with fixed gain, fixed architecture controls. Therefore, the use
of an adaptive system, where disturbances and/or plant models are identified prior to or during
control, gives systems designers more options for minimizing the risk in achieving performance
objectives.

The aim of adaptive control is to implement in real-time and on-line as many as possible of the
design functions now performed off-line by the control engineer; to give the controller "intelligence".
To realize this aim, both a theory of stability and performance of such inherently nonlinear controls
is essential as well as a technology capable of achieving the implementation.

The issues of performance sensitivity, robustness, and achievement of very high performance
in an LSS system can be effectively addressed using adaptive algorithms. The need to identify
modal frequencies, for example, in high-performance disturbance rejection systems has been shown
in ACOSS (1981) and VCOSS (1982). The deployment of high-performance optical or RF systems
may require on-line identification of critical modal parameters before full control authority can be
exercised. Parameter sensitivity, manifested by performance degradation or loss of stability (poor
robustness) may be effectively reduced by adaptive feedback mechanizations. Reducing the effects of
on-board disturbance rejection) is particularly important for planned Air Force missions. For these
cases, adaptive control mechanizations are needed to produce the three-to-five orders-of-magnitude
reductions in line-of-sight jitter required by the mission.

Research is essential to identify the performance limitations of adaptive strategies for LSS con-
trol both from theoretical and hardware mechanization viewpoints. The long range goal of this
research program is to establish guidelines for selecting the appropriate strategy, to evaluate per-
formance improvements over fixed-gain mechanizations, and to examine the architecture necessary
to produce a practical hardwarerealization. The initial thrust, however, is to continue to build a
strong theoretical foundation without losing sight of the practical implementation issues.



1.2 Research Objectives

The aims of this research study are to extend and develop adaptive control theory and its application 4
to LSS in several directions. These include:

1. Theoretical Development: The initial emphasis has been on slow adaptation, since this
covers may LSS situations. Later on we will examine fast adaptation. The theory developed
here will provide for:

(a) estimates of robustness, i.e., stability margins vs. performance bounds;

(b) estimates of regions of attraction and rates of parameter convergence to these regions;

(c) extension of the present linear finite dimensional adaptive theory to include nonlinear
and infinite dimensional plants and controller structures; and

(d) extensions to decentralized systems.

2. Parameter Adaptive Algorithms Assess the behavior of different algorithms, including:
gradient, recursive least squares, normalized least mean squares, and nonlinear observer (e.g,
Extended Kalman Filter).

3. Parametric Models: Assess the impact of model choices. In particular we will examine
the effect of explicit and implicit model choices. An explicit model, for example, is a transfer
function whose coefficients are all unknown. In an implicit model transfer function, the
coefficients would be functions of some other parameters. Implicit models usually arise from
physical or experimental data, whereas explicit models are selected for analytical convenience.

4. Adaptive Nonlinear Control: Although our early effort is to study adaptive linear control,
there are may LSS situations where the control is nonlinear, e.g., large angle maneuvers,
slewing.

1.3 Current Status

At the present time we stand at the beginning stages of the theoretical development in adaptive
control. The result of recent efforts are contained in the selected papers in the Appendix and the
references therein. A summary of earlier efforts is contained in the recently published textbook
Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press, 1986. This publica-
tion is an outgrowth of research supported under this contract and involved a considerable amount
of collaborative effort among several researchers in the field of adaptive control. The text discusses
adaptive systems from the viewpoint of stability theory. The emphasis is on methodology and basic
concepts, rather than on details of adaptive algorithm. The analysis reveals common properties
including causes and 'iech'aism's for instability and the means to counteract them. Conditions
for stability are presented under slow adaptation, where the method of averaging is utilized. In
this latter case the stability result is local, i.e., the initial parametrization and input spectrum is
constrained. Based on this analysis, a conceptual framework is now available to pursue the issues
of slow adaptive control of LSS.

To remove the restrictiveness of slow adaptation requires an understanding of the transient
behavior of adaptive systems. A preliminary investigation is reported in Kosut et al (1986). The

2
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transient behavior of not-slow or even rapid adaptation is a significant problem in the adaptive
control of LSS, e.g., rapid retargeting.

Another approach to adaptive control is to calibrate (or tune) the controller based on a current
estimate of the LSS model. This involves not just knowing one model, but rather, a model set. This
problem, which we refer to as adaptive calibration, is essentially that of developing a technique of
on-line robust control design from an identified model. Although we have worked on this problem
fcr some time it is only recently that we have established a theoretical basis for estimating model
error from system identification [see Kosut (1987), a reprint is in the Appendix]. This research
has raised many new questions which need to be considered, e.g., what is the appropriate robust
controller parametrization; how does it relate to model parametrization; how to iterate on the data
if the estimate of model error is too large; what are the heuristics for experiment design.

1.4 Selected Publications to Date

1.4.1 Journals and Conferences

R.L. Kosut, "On The Use of The Method of Averaging for the Stability Analysis of Adaptive
Linear Control Systems", Proc. IEEE CDC, Los Angeles, CA, Dec. 1987.

R.L. Kosut, "Conditions for Convergence and Divergence of Parameter Adaptive Linear S)stems",
Proc. ISCAS 1987, Philda., PA, May, 1987.

R.L. Kosut, "Adaptive Calibration: An approach to Uncertainty Modeling and On-Line Robust
Control Design", Proc. 25th IEEE CDC, Athens, Greece, Dec. 1986.

R.L. Kosut, "Towards an On-Line Procedure for Automated Robust Control Design: The Adaptive
Calibration Problem", presented at 1986 ACC, June 1986.

R.L. Kosut, 1 I.M.Y. Mareels, B.D.O. Anderson, R.R. Bitmead, and C.R. Johnson, Jr., "Transient
Analysis of Adaptive Control", submitted to IFAC 10th World Congress, Munich, Germany,
July 1987.

R.L. Kosut,1 and R.R. Bitmead, "Fixed-Point Theorems for Stability Analysis of Adaptive Sys-
tems", Proc. IFAC Workshop on Adaptive Systems, Lund, Sweden, July 1986.

R.L. Kosut,1 and R.R. Bitmead, "Linearization of Adaptive Systems: A Fixed-Point Analy-
sis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, -.-

Sept. 1987.

I.M.Y. Mareels, R.R. Bitmead, M. Gevers, C.R. Johnson, Jr., R.L. Kosut,l and M.A. Poubelle,
"How Exciting Can a Signal Really Be?", to appear, Systems and Control Letters.

R.L. Kosut, 1 B.D.O. Anderson, and I.M.Y. Mareels, "Stability Theory for Adaptive Systems:
Methods of Averaging and Persistency of Excitation", IEEE Trans. on Aut. Contr., to
appear, Jan. 1987.

B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., and R.L. Kosut, "Stability Theorems for the
Relaxation of the SPR Condition in Hyperstable Adaptive Systems", IEEE Trans. on Aut.
Contr., submitted.

1Research performed while R.L. Koeut was a Visiting Fellow at the Australian National University.
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R.L. Kosut and C.R. Johnson, Jr., "An Input-Output View of Robustness in Adaptive Control",
Automatica: Special Issue on Adaptive Control, 20(5):569-581, Sept. 1984.

R.L. Kosut, 2 and B. Friedlander, "Robust Adaptive Control: Conditions for Global Stability",
IEEE Trans. on Aut. Contr., AC-30(7):610-624, July 1985.

1.4.2 Books

B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V. Kokotovic, R.L. Kosut, I.M.Y. Mareels,
L. Praly, and B.D. Riedle, Stability of Adaptive Systems: Passivity and Averaging Analysis,
MIT Press, 1986.

R.L. Kosut, "Methods of Averaging for Adaptive Systems", Adaptive Systems: Theory and Ap-
plications, Editor: K.S. Narendra, Plenum Press, 1986.

R.L. Kosut and M.G. Lyons, "Issues in Control Design for Large Space Structures", Adaptive
Systems: Theory and Applications, Editor: K.S. Narendra, Plenum Press, 1986.

R.L. Kosut, "Adaptive Control of Large Space Structures: Uncertainty Estimation and Robust
Control Calibration", Large Space Structures: Dynamics and Control, Editors: S.N. Atluri
and A.K. Amos, Springer-Verlag, 1987.

1.4.3 Other Related Publications

M.L. Workman, R.L. Kosut,3 and Franklin, "Adaptive Proximate Time-Optimal Servomecha-
nisms: Continuous-Time Case", Proc. ACC, pp.589-594, June 1987, Minneapolis, MN.

M.L. Workman, R.L. Kosut s , and Franklin, "Adaptive Proximate Time-Optimal Servomecha-
nisms: Discrete-Time. qas<", Proc. CDC, Dec. 1987, Los Angeles, CA.

R.L. Kosut, 4 A. Pascoal, S. Morrison, and M.L. Workman, "Time-Optimal Control of Large Space
Structures", Proc. SPIE, Jan. 1988, Los Angeles, CA.

S. Philips, R.L. Kosut 3, and G.F. Franklin, "An Averaging Analysis of Discrete-Time Indirect
Adaptive Control", to appear, Proc. ACC, June 1988, Atlanta, GA.

1.5 Collaborative Research Effort

Dr. Kosut has continual exchanges and collaboration with many of the leading researchers in the
field of adaptive control and system identification. He has made two visits to the Australian
National University in order to work jointly with Prof. B.D.O. Anderson and Prof. R.R. Bitmead
of the Systems Engineering Dept. These visits were supported by AFOSR under this contract
with travel grants from the Australian National University and a joint research grant with ISI and
Cornell University (Prof. C.R. Johnson, Jr. was co-principal investigator) under funding from the

2Started under contract F4920-81-C-0051.
alesearch supported partly by NSF Industry/ University Cooperative Research Program under Grant ECS-

6605646.
4Jesarch supported by SDIO/IST and managed by AFOSR.
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NSF/US Australia Cooperative Research Program. Dr. Kosut also visited on several occasions with
Prof. Kokotovic of the Coordinated Science Lab of the University of Illinois in Urbana, Illinois,
and with Prof. C.R. Johnson, Jr. of the School of Electrical Engineering of Cornell University in
Ithaca, New York. The textbook Stability of Adaptive Systems (MIT Press, 1986) and numerous
joint papers (see Section 1.4) were a direct outcome of these visits.

Dr. Kosut has also been invited to spend some time in Sweden with Prof. K.J. Astrom of the
Lund Institute of technology and with Prof. L. Ljung of Linkoping University, both of whom are
experts in the field of system identification and adaptive control. These visits are supported by
AFOSR, Directorate of Aerospace Sciences, the NSF Industry/University Cooperative Research
Program, and the NSF U.S./Sweden Cooperative Research Program.

Prof. E. Crawley from the Dept. of Aeronautics and Astronautics of MIT will be spending his
sabbatical leave, starting in December 1987, at Stanford University. There he will collaborate with
Dr. Kosut on a textbook on the dynamics and control of large space structures. -

Dr. Kosut is also collaborating with Professor C. R. Johnson, Jr. from Cornell University on a
textbook on robust and adaptive control.

1.6 Future Directions

Based on our recent results as reported here, we envision near-term activity in several directions,
including: r

" transient analysis of adaptive control;

" analysis of adaptive calibration;

" decentralized control structures;

" effect of nonlinear and infinite dimensional phenomena;

" effect of different algorithms and parametrizations.

1.7 Organization of Report

In Chapter 2 we provide an overview of our rerseach efforts in this past year. Specifically, the
chapter contains brief discussions of some of the research areas listed above, pointing out the
general research directions, and in particular, their specific applicability to LSS systems.

Chapter 3 contains a parallel, but more in-depth technical discussion of the same research topics. 4
There is also an Appendix which contains some of our recent publications from this past year.

5i



Chapter 2

Overview f "Research Activities

2.1 Motivation and Objectives

Many of the envisioned future large space structure (LSS) missions will impose stringent perfor-
mance demands on tracking accuracy and structural vibration attenuation. For example, some
planned missions will require three to five orders of magnitude reduction in line-of-sight optical
jitter. Both active feedback control and passive damping will thus be a practical necessity, and
moreover, their design will require a model of the LSS system whose accuracy is compatible with
the performance demands. Even random variations in materials and manufacturing tolerances
will significantly degrade closed-loop performance. For example, the need to have very accurate
models for high performance disturbance rejection has been demonstrated in the ACOSS(1981)
and VCOSS(1982) programs. The deployment of high-performance optical or RF systems will also
require accurate models before full control authority can be exercised. As a result of these and
other research programs, it is clear that the on-orbit dynamics of LSS will not be sufficiently like
those obtained from either ground-testing or even from sophisticated computer generated modeling
techniques, such as finite element modeling. Current structural modeling techniques are just not
sufficiently accurate or able to account for all the possible sources of parameter variation. There-
fore, under these conditions, it will be necessary to identify the LSS dynamics directly from on-orbit
mcasurements, and simultaneously, tune ,r re-design the control. Hence, the control design cycle
will be an adaptive process, typically starting with a nominal low-performance design based on
a coarse model, and then re-designed from on-orbit data. The adaptation may take place either
off-line or simultaneously while the system is operating, but in either case, the process will require
on-orbit data.

As an illustration of adaptive control for an LSS system, consider the two-level control archi-
tecture depicted in Figure 2.1. The two levels consist of a colocated rate damping controller and
a non-colocated high performance controller. The colocated controller consists of active and/or
passive rate damping devices placed at critical structural locations, and their design requires only a
coarse knowledge of system dynamics. This is an inherently robust controller, but yields low perfor-
mance, and has been referred to as the low authority control (LAC) system. The high performance
controller is non-colocated and requires an accurate knowlege of critical modes, and hence, is very
sensitive to structural parameter variations. This controller, referred to as the high authority con-
trol (HAC) system, provides high damping and mode shape adjustment in selected modes in order
to meet the performance demands. We remark that the stringent performance demands cannot be

, 7
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met with passive or active rate damping mechanisms alone. Also, the synthesis and design of the 4

HAC/LAC system has to be properly integrated to avoid performance degradation due to modeling

inaccuracies, see, e.g., Aubrun et al.(1979). With this architecture only the HAC-system is likely

to be tuned by an adaptive system, as shown in Figure 2.1.

The limitations of the HAC and LAC systems performance with respect to structural parameter
variations is illustrated in Figure 2.2. Observe that the LAC system provides significant robustness "

to parameter variations, but the performance increase over the open loop structure is moderate.

The opposite is true for the HAC system, which provides significant performance increase, but is

very sensitive to parameter variations. The adaptive control of the HAC system allows for a much

wider latitude in parameter variation while maintaining the performance level required.

The objective of our research program is to establish the theoretical foundations and performance

limitations for the application of adaptive control to large space structures. To realizt 'his aim, the-

oies of both stability and performance of such an inherently nonlinear control system are essential,

as well as a technology capable of achieving the implementation.

2.2 Summary of Recent Research

2.2.1 Stability and Convergence Analysis

Until recently, the underlying conditions for stability and convergence and the causes for divergence

and instability in adaptive control systems have not been entirely understood. We our proud to
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say that our recent research, supported by the AFOSR Directorate of Aerospace Sciences, has
contributed significantly to a deeper understanding of these phenomena. In fact, when we began
our research program, the then existing theory of adaptive control was wholly inapplicable, not
only for LSS systems, but for any dynamic system. The main reason for this was that the then
existing theory required perfectly accurate models, which of course is an unrealistic requirement.

As a consequence of this lack of appropriate theory, a major emphasis in our recent research has
been the development of a fundamental theory of adaptive control which is applicable to realistic
dynamic system models.

In commencing our research program, we first recognized that the problems in establishing
realistic conditions for stability and convergence arise not only from the unique dynamical character
of LSS systems, but also from the basic philosophy underlying the design of an adaptive control
system. As depicted in Figure 2.3, there are essentially two basic processes, namely: (1) a model
estimator, and (2) a control design rule.

The model estimator operates on the input-output data obtained from measurements of the
system to be controlled, producing a model estimate from a pre-determined model set. The model
estimate is transformed by the control design rule into a controller to be used in feedback with the
actual system. The ftindamdrntal question is: when will it work? That is, under what conditions
will the model estimate converge to a good model in the allowed model set. By a good model
is meant one that produces a controller, via the control design rule, which when applied to the
actual system yields acceptable closed-loop performance. Even if such a good model exists, the
estimated model may not converge, even if the estimated model is initialized close to a good model.
Moreover, if convergence is too slow, then unacceptable behavior can occur during the learning
process. Thus, convergence alone is not a sufficient condition for establishing good performance.
We also need information about the convergence rate, particularly how it can be affected by user
choices of inputs, data filters, etc.

During our research on the problem of stability and convergence we worked closely with several
other researchers. A summary of these efforts is contained in the recently published textbook Sta-

9j
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bility of Adaptive Systems: Passivity and Averaging Analysis (MIT Press) by Anderson et al.(1986).
The stability analysis focuses on slow adaptation and the use of some of the classical methods for
analyzing differential equations, e.g., linearization, the method of averaging, and Lyapunov's second
method, see, e.g., Hale(1969). The material in the text represents modifications and refinements of
earlier work, specifically: Astrom (1983, 1984) showing how the method of averaging explains insta-
bilities and drift; Reidle and Kokotovic (1985, 1986) on slow adaptation and the integral manifold;
Kosut, Anderson, and Mareels(1987) on the relation between averaging and persistent excitation;
Kosut (1985) and Bodson et al.(1986) on nonlinear averaging analysis and determining the rate of
convergence; and Kosut and Anderson (1986), Kosut and Johnson(1984) on linearization and local
stability.

The above analysis reveals common properties including the causes and mechanisms for insta-
bilities and the meads to counteract them. In particular, conditions for stability are presented
under slow adaptation, involving the method of averaging. Based on this analysis, a conceptual
framework is now available, for the first time, to pursue adaptive control of LSS systems, under
slow adaptation. We remark that in the literature on adaptive control, this issue is often referred
to as the robustness of adaptive control, i.e., what happens under non-ideal conditions such as the
effect of unmodeled dynamics and disturbances. [ An historical perspective of this research area is
provided in Section 2.7.1].

To remove the restrictiveness of slow adaptation requires an understanding of the transient
behavior of adaptive systems. Preliminary investigations are reported in Kosut and Bitmead(1986)
and Kosut et al.(1987). This pursuit involves new analysis methods, not necessarily averaging, and
further development of these and other techniques is one of the our research goals.

2.2.2 Uncertainty Estimation

Referring again to Figure 2.3, we see from the previous discussion that the adaptive control system
ib working if one can prove that the estimated model converges to a "good" model of the true
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system. And, for example, analysis techniques based on the method of averaging, as described
above, do provide an assessment of the adaptive system under slow adaptation.

Another route, which we are currently exploring, is to modify the identification process so that
it produces not only an estimated model, but a measure of model uncertainty as well. With such
an estimate in hand the control design rule can be modified to account for the model uncertainty.
If the resulting controller is too cautious, because the model estimate is too uncertain, then it is
necessary to repeat the estimation procedure so as to obtain a better model.

Thus, the adaptive control now contains an outer loop, as shown in Figure 2.4 which provides
some expert advice as to when to use the model estimate. Other "artificial intelligence" (Al)
features can also be incorporated in the outer loop. This feature will be expanded upon in our new
program.

In our current research program we are concentrating on a particular procedure for obtaining
a measure of model uncertainty for linear time invariant plants. The process is referred to as un-
certainty estimation and the outcome is a frequency domain expression for the model uncertainty.
The motivation arises from robust control theory which utilizes frequency domain expressions for
characterizing a set of uncertainty within which lies the true plant, e.g., Francis and Zames(1983),
Safonov et al.(1981), Doyle and Chu(1985), Vidyasagar(1985). The set of uncertainty is extracted
from input-output measurements. Our current approach uses a combination of parametric pre-
diction error methods together with standard non-parametric (spectral) estimation methods. The
set of uncertainty produced by the modified identifier allows for performance evaluation before the
controller is adjusted. If the predicted performance is not satisfactory then the identification pro-
cess is repeated under different conditions which will reduce model uncertainty where needed. The
resulting controller is designed to be robust with respect to the estimated set of uncertainty. Thus,
a large set of uncertainty requires a cautious or low authority controller, whereas a small set of
uncertainty will result in a high authority controller. Also, the order of the controller can vary with
the set of uncertainty. Details have been reported in Kosut(1986,1987a,b).

11



2.3 New Research Directions

The previous discussion emphasized two important areas of basic research, namely: (i) methods
of stability and convergence analysis, and (ii) uncertainty estimation. In order to facilitate our
research in these areas we have concentrated on the simplest of model parametrizations, namely,
finite dimensional transfer functions where the adaptive parameters are the coefficients. This choice
leads to the standard forms of recursive parameter adaptive algorithms for identification and adap-
tive control, e.g., gradient, recursive-least-squares, etc. Despite this simple model choice, we are
nonetheless still faced with basic unresolved research issues in both of the mentioned areas. At -
the same time, we feel that there is now a sufficient foundation to extend the previous results and
develop new theory and methodology applicable to other model parametrizations and other types of
controllers. For example, physical model parametrizations, typical of LSS characteristics, include:
continuum models, wave models, and finite element models. These types of models will require new
identification and adaptive control algorithms, and will stretch and test our previously developed
methods for stability and convergence analysis. Other control types include: nonlinear controllers
such as might arise from large angle maneuvers or rapid-retargetting and tracking, and decentral-
ized controllers which arise from restricted information distribution, i.e., decentralized information
patterns.

Many new unanswered questions arise from these choices, specifically how they affect system
identification and adaptive control. For example:

" What is the best procedure for developing parameter estimation algorithms from physical
model parametrizations, e.g., gradient, Gauss-Newton, etc?

* How do we use an estimated physical model for control design?

* Will our present analysis tools for stability and convergence be valid for these model choices?
What are the necessary modifications?

" How well do such model forms approximate the "true" LSS system? How well do they
have to, particularly when the intended use is control design? What is the effect on model
structure selection of the control design criteria, such as vibration suppression, rapid tracking,
decentralized information, etc?

" What are the best test conditions for the identification experiment when the intended use
of the estimated model is for control design? How does one choose the experiment design
variables, such as test signals, sampling rate, data filters, and so on?

" What is the affect of utilizing the estimated model for nonlinear control?

" How does a decentralized control architecture modify system identification? Under what --

conditions will a truly decentralized adaptive control system converge?

" Given any model, is it better, in general,to directly estimate the model or to directly adjust
the controller parameters based on the model?

These questions broadly cover the basic research areas. However, it is often difficult to discuss
one area without another.

12



2.4 Model Structure Selection for Control Design

Consider again the adaptive control system depicted in Figure 2.3. The controller parameters are
adjusted in accordance with estimated model parameters obtained from on-line data. The first step
then, in designing the adaptive control system, is to select a model structure or parametrization.'

2.4.1 Model Parametrization

We will restrict our discussion here to parametric transfer function models. There are two basic
choices for parameters:

* physical parameters

* canonical parameters

Physical parameters include masses, spring constants, electrical circuit quantities, etc. Canoni-
cal parameters are best exemplified by transfer function coefficients, which usually depend in a
complicated manner on the physical parameters. Moreover, if the transfer function represents a
sampled-data system, then the relation between the physical parameters and the transfer function
coefficients becomes even more complicated, particularly when the sampling rate is low.

In parameter estimation, the above parametrizations offer different adavantages and disadvan-
tages. The estimation of transfer function coefficients can be very direct, because it is possible to
express the prediction error as a linear function of these parameters, thus leading to simple estima-
tion algorithms, such as recursive least squares. Physical parameters are directly meaningful, but
because they enter in a complicated manner into the transfer function coefficients, the prediction
error is also a complicated function of the physical parameters, making direct estimation schemes
difficult to design. Often a system model can be characterized by a few physical parameters,
whereas the transfer function may consist of very many coefficients.

One can now ask the question: which of the above model parametrizations is "better"? To
answer this question, we first remark that neither is correct, because the true system is different
than either model. Even the so called physical transfer function model is undoubtedly derived
under certain assumptions, such as small deflections, linear elasticity, uniform mass density, etc.
Hence, the choice should be made by considering the intended use of the model.

2.4.2 Model Evaluation

In control design, which is the case we consider here, what is needed is an estimate of the trans-
fer function, whose accuracy is determined by the closed-loop performance. In this regard the
parametrization is a convenient way to obtain this result. However, the different parametrizations
invoke parameter estimation algorithms which may have significantly different convergence prop-
erties and numerical stability properites. Hence, although closed-loop performance is the ultimate
aim, other criteria must be considered such as numerin its complexity, e.g., there should not be too
many parameters, but just enough for the intended use of the model.

'It is possible to parametrize the dosed-loop system in terms of controller parameters, which are then directly

adjusted, rather than going through an indirect route via model parameter estimation. An example is the model
reference adaptive control.
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In summary, to evaluate a particular model parametrization for on-line parameter estimation,
when the intended use of the estimate is for control design, the analyst needs to determine the
relations among the following choices:

e a representative "true" system

e a parametric model set, I

* a model estimator or adaptive algorithm

e a set of closed-loop performance criteria -

9 a control design approach, rule, or algorithm

At first glance it would appear that these choices cannot be separately analyzed. This is not
the case at all! A very clear presentation of parametric transfer function estimation is contained in
the recently published textbook by Ljung(1987). [A brief summary is provided in the Appendix in
Section 3.4.] There we find the following important results:

" Least squares parameter estimation is equivalent, asymptotically in the length of the data
record, to minimization of a weighted frequency domain criterion which penalizes the quadratic
error between the true system transfer function and the parametric model transfer function.
The weighting function depends on various user choices, such as the input spectrum, data
filters, and the noise or disturbance model.

" The mean-square-error (MSE) between the true system transfer function and the ideal2 es-
timated transfer function can be explicitly evaluated and depends on the user choices listed -_

above.

One of the most significant aspects of the above results is that the MSE btween a particular
choice of model parametrization and the true system can be evaluated without specifying how the
estimate is computed or whether it converges. The convergence question involves the analysis tech-
niques reported in Anderson et al.(1986). Hence, conditions for convergence add further constraints .-
on the user choices. It is important to emphasize that since the above results depend on the choice
of a "true" representaive system, they can be used for analysis and design of the estimator and
estimation experiment.

Many research efforts have been undertaken to evaluate methods of system identification for
distributed parameter and LSS type systems. For example, we cite Goodson and Polis(1974), Banks,
Crowley, and Kunisch(1983), Rafajlowicz(1983), Schaechter(1982,1986), and Denman et al.(1986),
to name a few. The difference between these reported results and what we are investigating is
the connection we make between the criteria for system identification and the intended use of the
estimated model for control design. To our knowledge there has never been an organized effort
along the lines we suggest. It is our contention that by proceding in this organized manner, backed
up by the strong theoretical foundations in Ljung(1987) and in Anderson et al.(1986), that results
can be obtained which will be of scientific value in themselves, and will significantly increase our
prospectives for practical system identification and adaptive control of LSS.

2The ideal estimate mnnimies. Ahe least squres criterion for a specified length of the data record. This is not the
estimate which is recursively computed from on-line data. These two estimates are, at best, asymptotically equivalent,
with the recursive estimate having a larger variance, the size of which is dependent on the specific lgorithm for on-line
estimation.
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2.4.3 Use of the MSE for Analysis

The MSE for model error is a function of the true plant, the estimation criteria, and the length
of the data record. Hence, computation of the MSE provides an analysis tool for deti.rmining the
effectiveness of on-line transfer function estimation. We remark again for emphasis t at the MSE
is not dependent on how the estimate is computed. The parametrization alone can be assessed for
control design.

We are continuing to examine the effect of a number of model parametrizations on the MSE
corresponding to both parametric and non-parametric methods of transfer function estimation.
Specific studies will include least-squares and least-peak methods of parameter estimation, with
parametric transfer function representations such as might arise from continuum modeling, wave
modeling, or finite element modeling of an LSS. The non-parametric transfer function estimation
methods will be based on spectral estimation techniques. The effect of these choices on estimation
critera and the MSE will be examined, specifically where the intended use of the model is for on-line
control design. Computing the MSE will be a significant part of this effort.

Continuum Modeling As one example of the kind of analysis that might be accomplished,
we will examine the use of simple continuum models, such as beams, shells, plates, etc., with
parametrized spatially varying parameters. For example, a true system can be represented as a
non-uniform elastic rod, whereas the model set is a uniform rod with the parameters to be estimated
being the constant tortional mass and stiffness. In this case we will try to determine what amount
of distributed tortional mass and stiffness can be sufficiently well approximmated by a uniform
mass and stiffness for the purposes of control design. We will repeat the analysis with the same
true system, but with other parametric models from the above list as brifly described below.

Wave Modeling Wave models may be quite useful for designing active controllers which act
like mechanical energy absorbers, see, e.g., von Flotow(1984), Hagedorn(1985). The wave model is
parametrized in terms of the frequency dependent "scattering coefficients" which describe the wave
properties.

Finite Element Modeling The mass and stiffness matrices which arise from a finite element
analysis are dependent on a variety of physical parameters, such as areas, radii, mass densities,
etc. Small variations about nominal values can be regarded as the model parameters, see, e.g.,
McIntosh and Floyd(1985).

Distributed Spatial Measurements The same methodology permits evaluating the benefits of
distributed spatial m~asuregents, or what is more likely, many closely spaced measurements. The
availability of such measurements can significantly simplify the physical parametrization of transfer
function models. We remark that the spatial measurements might not be just position and velocity
but might involve the outputs of very many strain gauges placed appropriately on the structure.

2.4.4 Experiment Design

The MSE can be used to aid in designing the estimation experiment. The objective being that
during the actual experiment the maximum amount of data is extracted in computing the transfer
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function estimate. This particular issue, referred to as experiment design, has been extensively
investigated, e.g., Goodwin and Payne(1977). Recently, there has been a specific interest in using
these results in order to design experiments which optimize the use of the transfer function estimate
in control design, e.g., Ljung(1985), Wahlberg and Ljung(1986), Gevers and Ljung(1986). These
results minimize a weighted norm of the MSE with respect to free parameters or choices in the
experiment, e.g., input spectrum, model order, etc. Since the MSE depends on the true plant, the
methods offer usefull guidelines for designing the experiment. The basic idea is to make the criterion
for estimation similar to the criterion for control design as listed under Task I in Section 2.3.

At the present time the use of the MSE as a measure of experiment design for the case when the
intended use of the transfer function estimate is control synthesis is still in the beginning stages.
One of the major problems is that measures of closed loop performance are complicated functions
of the MSE and the criterion for estimation.

We have been studying this relationship with particular emphasis on the LSS dynamic repre-
sentations previously mentioned and the control design appraoches discussed next.

2.4.5 Control Design Criteria and Approaches

In the previous discussion we have emphasized the need to evaluate the model structure for identi-
fication in terms of the intended use of the estimated model for control design. In this section we
briefly discuss control design criteria and approaches. The control design criteria typically include:

" vibration suppression

* regulation

" tracking

Typical constraints include:

" robustness to model error

" actuator limitations - '

" decentralized architectures

Control design methods for achieving these goals are hard to classify or codify, but a partial list
is as follows:

" pole placement

" minimum variance

" LQG

" stable factorization

" Hoo-optimization
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First of all, it is not possible here to discuss all these methods. Secondly, what is of pri-
mary interest is the goal of the methodology and how it is reflected in the criterion for system
identification. Now, although it is not easily apparent, the above design approaches can all be
subsumed using the so-called stable factorization (SF) approach as presented in Desoer et al.(1980)
and Vidyasagar(1985). 4

Stable Factorization Approach The basic idea is to "factor" the plant into a ratio of two
stable transfer functions, or operators, in the more general case. It can be shown that these
factors allow for the parametrization af all stabilizing controllers in terms of a single stable transfer
function, referred to as the Youla parameter [Youla et al., 1976]. Moreover, and this is perhaps
the most significant aspect of this controller representation, all the closed-loop transfer functions
from exogenous inputs to internal outputs depend linearly on the Youla parameter. The use of this
approach specifically for vibration control of lightly damped systems and LSS can be found in
Bennett et al.(1987), Helmicki et al.(1987), and Pichet(1985).

To relate the SF approach to pole placement simply means to select the stable factors so that
the poles are placed where desired in the factors.

The LQG approach requires the introduction of a norm in the signal space, i.e., average integral
squared in time. This translates to what is called the H2 norm of the closed-loop transfer function
matrix, i.e., integral squared in the frequency domain. In fact, the LQG state space controller-
observer solution is equvalent to a particular stable factorization, see, e.g., Nett et al.(1984).

Robustness The SF approach also provides for a natural measure of robustness to model error.
It turns out that the weakest topology for handling robustness is exactly a ratio of stable factors,
Vidyasagar(1984). Thus, robustness to model error is more naturally seen as perturbations in
the stable factors. The appropriate norm is the peak value, as a function of frequency, of the
closed-loop transfer function, referred to as the Hob-norm. Techniques for Ho-optimization are
attempting to find that control which achieves optimal robustness to model error, see, e.g., Francis
and Zames(1983), Boyd et al.(1987).

Preliminary analysis of robustness to model error in the LSS environment has been examined
in Kosut et al.(1983), Bhaya and Desoer(1985), to name a few. We have examined the use of SF
approaches and how to affect the identification criterion so as to obtain an estimate which results
in a control design that is maximally robust.

2.5 Computing the Model Estimate from Data

In general, adaptive algorithms share a similar genesis and purpose, namely to adjust a parameter
vector to asymptotically approach a member of the set which minimizes an average squared error,
such as prediction error for system identification or tracking error for direct adaptive control.

In the ideal case, the parametrization can be selected so as to achieve what is called perfect
matching, i.e., for some restricted class of exogenous inputs (usually no disturbances), and a suffi-
ient number of parameters (no unmodeled dynamics), there is a single minimum which produces

either zero error or the error is zero-mean white noise.

Under realistic, but non-ideal, conditions, the best that can happen is that the adaptive pa-
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rameters asymptotically approaches a small neighborhood of a local minima of the average squared
error, see, e.g., Anderson et a.(1986).

2.5.1 Adaptive Algorithms

Parameter Adaptation One method to achieve this result is to adjust the parameters in the
negative gradient direction of the instantaneous squared error, a procedure that was once referred to
as the "MIT-Rule" [see Section 2.7.1]. More general procedures involve adjustments in accordance
with Gauss-Newton iterations, thereby taking into account second order effects. The recursive least
square algorithm is the classic example of this approach. These methods can be extended for a host
of error measures, which are not required to be quadratic, see, e.g., Ljung and Sodestrom(1983),
Goodwin and Sin(1984).

Constructing the Error Gradient from Measured Signals A difficulty with constructing
the above algorithms is that the error gradient with respect to the parameters, as if they were
fixed, is required. However, in most cases, the error gradient is a function of the true, but unknown
plant. The actual algorithm must then use an approximation, which is loosely referred to as the
regressor. (An example of constructing the regressor for a simple continuum model is provided in
the Appendix in Section 3.7.3.)

Algorithm Modifications: "Al" Features To insure that adaptive algorithms are working,
one often includes various "safety nets" or Al features. For example, in uncertainty estimation,
the controller is not changed until some level of confidence is established. Other AI features
include monitoring of information, covariance monitoring, perisitent excitation conditioning, and
parameter projection, to name a few. Various normalizations of the measured sugnals also enhance
the ability of adaptive systems to insure bounded parameter values. These latter approaches need
prior information regarding model error and parameter ranges.

On-Line Control Design Rules Once the estimated model is obtained, the control design rule
(see Figure 2.3) transforms the estimate to a controller which is then implemented with the actual
system. If the model estimate includes an uncertainty estimate as well, then the control design rule
will involve a robust design procedure such as outlined in our discussion of the stable factorization
approach.

We will continue to develop and evaluate the control design rule based on the model structure
selection and the control design criteria listed before. Once the design rule is established, we need
to then turn our attention to:

* experiment design

* stability and connvergence analysis

These issues will be discussed in the following sections. The experiment design problem involves

computing the MSE. The stability and convergence analysis involves the method of averaging and
other extentions and new techniques as required.
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2.5.2 Performance of the Algorithm

Despite the above approximation, from a practical point of view it is certainly acceptable that
the parameters approach and remain in a small neighborhood of a local minimum of the average
squared error, provided that members of this set also produce acceptable performance.

We refer to each member of this set as a tuned parameter, and to the corresponding feedback
system as the tuned system (see, e.g., Kosut and Friedlander(1985)]. Clearly the tuned system is
the adaptive feedback system of Figure 2.3 with the adaptive parameters held fixed at a tuned
setting. We can now pose the following questions regarding the adaptive system:

1. How do the tuned parameters depend on the exogenous inputs?

2. Is the adaptive system stable in a neighborhood of the tuned system. Furthermore, how small
is this neighborhood?

3. What is the region of attraction to a small neighborhood of the tuned system.

4. What is the rate of convergence to this small neighborhood.

These questions can only be answered by application of methods of stability and convergence
analysis. (See Sections 2.7 and 3.8.)

An important part of our research effort will be in developing suitable approximations to the
error gradient. The suitability of a particular approximation will of course be dependent upon the
results of the stability and convergence analysis.

2.5.3 Multiple Model Adaptive Control

We are also examining an adaptive control scheme which involves the selection of a fixed controller
out of a finite collection, where each controller is robustly designed to account for the true plant
being in a not necessarily small set of uncertainty. There are no adaptive "parameters" in the
conventional sense where adjustments are made to either model or controller parameters. The
parameters here involve pseudo-probabilities or weights assigned to each of the finite controllers.
These quantities are computed recursively from the measured data. Various adaptive selection
mechanisms which depend on these pseudo-probabilities will be developed as appropriate.

Figure 2.5 depicts the general adaptive set-up that we consider. The design of each controller
Ci(z) is not an adaptive control design, but rather, a robust control design task. The signals used
to adaptively select the controller are the innovations sequences, or prediction errors, denoted by
eI(t),. .. ,EN(t), where each is obtained from the Kalman filters denoted KF1 ,...,KFN.

Our main task is to explain how the best controller in the set of controllers can be selected to
control the plant. This type of adaptive controller is not like the conventional ones where either
model or controller parameters are directly adjusted. Here the parameters are contained in the
mechanism for switching amongst the preselected robust controllers, which is essentially a gain
scheduling procedure, but is adaptive in the sense that the schedule is being learned from the
measured data. The gain schedule is usually set in advance. For example, in a flight control system
the gain schedule is a predetermined function of the Mach number and aerodynamic pressure.
One of the interesting possible advantages of this method is that although the plant may have a
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Figure 2.5: Multiple Model Adaptive Control

large number of uncertain parameters, it is possible that only a few controllers are required, and
hence only a few parameters in the selection mechanism. Also the individual robust controllers can
be based on uncertainty in physical parameters rather than canonical parameters, such as transfer
function coefficients, as used in the conventional parameter estimation techniques, e.g., least squares
with a linear regression model.

The adaptive selection mechanism as described above has been investigated in Anderson and
Moore(1979) and Athans et al.(1977). In this latter reference this scheme is referred to as a Multiple
Model Adaptive Control (MMAC), but the individual controllers are not selected to be robust in
the manner described above. We are developing an analysis of the convergence properties of the
adaptive selection algorithm following the analysis in Anderson and Moore(1979).

2.6 Computing Model Uncertainty from Data

The requisite information for robust feedback stabilization is typically a nominal model of the
plant together with an uncertainty profile. From the above discussion, computation of the MSE
for model error allows one to evaluate a control design which is based on a nominal (estimated)
model together with an a priori estimate of model accuracy. We will use both parametric and
non-parametric methods of transfer function estimation, where the non-parametric methods yield
direct estimates of the accuracy. Essentially, uis approach provides a direct estimate of the MSE.
The accuracy to which the estimate is set depends on the criteria for control design.

The reason that we consider non-parametric methods is that they can provide estimates of
model accuracy as a function of frequency, particularly over those frequency ranges where either
the model structure is poorly known, or else the model accuracy in that range is unimportant for
control design. The feasibility of using spectral techniques for the estimation of model error can be
found in Kosut (1986,1987q.), and for LSS application in Kosut(1987b).
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2.7 Methods of Stability and Convergence Analysis

In order to more fully appreciate the significance of the convergence and stability problem in
adaptive control we offer the following historical digression. This will also serve to motivate and
place our previous results and proposed new research directions in this area.

2.7.1 A Bit of History

Over the years, the application of adaptive control theory, as reported in the literature, has not
met with a uniform success. Surprisingly, some early applications to flight control were reported
to be quite successful despite the lack of theory, e.g., Whitaker(1959) and Osborne et al.(1961). In
more recent years, with more theory available, some reported applications-again to flight control-
were not deemed successful, e.g., Bryson(1977). At the same time as these mixed results were being
obtained in the area of flight control applications, several researchers were reporting good results
with applications in process control and in ship steering, e.g., Astrom et al.(1965, 1973). Why these
mixed results?

The answer lies partly in the engineering aspects which motivate the use of adaptive control, and
partly in the overall research goals in developing an adaptive control theory. These are sometimes
in conflict. The engineering application calls for a control structure which takes into account the -
nature of the physical problem. The theory is looking to solve a canonical problem, and hence, often
fails to account for a priori, or experiential "rule-based" knowledge. A good example is proided
by a brief history of the adaptive control technique developed by Whitaker(1959), later referred to
as the "M.I.T.-Rule". The basic idea is to adjust the adaptive control parameters in accordance
with an instantaneous gradient descent of the squared error signal as described in Section 3.4. -

Although the resulting algorithm is simple to construct, and incidently worked well enough
in simulations, there was no guarantee the resulting adaptive system would be stable. Probably
because the causes of these difficulties were not readily forthcoming, and perhaps also there was
(and still is) the desire to construct a "universely" stabilizing adaptive control, other approaches
to adaptive control were explored.

One such avenue was announced in a paper by Parks(1966), where the M.I.T.-Rule was "re-
designed" in such a way that the resulting adaptively controlled system had a guaranteed stability
property. The idea was to make a certain transfer function strictly positive real (SPR) which has
the effect of insuring that the parameter adjustment is always in the right direction. This "SPR-
Rule" idea was developed later for more general situations, e.g., Monopoli(1974), Egardt(1979),
and Narendra, Lin, and Valavani(1980). Further extentions and expositions along the SPR line can
be found in Landau(1979), Goodwin and Sin(1983), and Kosut and Friedlander(1985).

Unfortunately, these SPR-Rule algorithms have exactly the same stability problems as the MIT-
Rule algorithms, but only when unmodeled dynamics and disturbances are taken into account. This
issue was perhaps not fully, realized until the appearance of the work of Rohrs et al.(1982), which
vividly demonstrated the potentially local unstable nature of adaptive systems by posing a "counter-
example" representative of a non-ideal, but practical, circumstance. The adaptive parameters
exhibited the characteristic rapid transient followed by a steady parameter drift. In this case,
however, the parameters did not settle down in the constant parameter stability set. Thus, once the
parameters drifted outside the stability set, the states of the controlled system became exceedingly
large.
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Cause of Parameter Drift Instability In scanning the literature, the earliest reference which
contains a rigorous analysis of this instability phenomena appears to be in a note by James(1971).
A Floquet analysis is applied to an MIT-Rule one-parameter linear adaptive system (adaptive
feedforward only) with periodic inputs. The result is a complex stability-instability boundary
revealing multiple resonance phenomena, precisely like that associated with the Mathieu equation,
e.g., Hale(1969). No nonlinear analysis was undertaken for the case with adaptive feedback.

The work of Ljung(1977) which utilizes a technique of stochastic averaging can perhaps be
said to herald the beginning of a nonlinear analysis technique, but its applicability to adaptive
systems in non-ideal situations was not fully explored at that time. Lyepunov techniques, explored
by Anderson and Johnstone(1983) and Ioannou and Kokotovic(1983), showed that persistently
ezciting signals are required to provide a uniform asymptotic stability of the ideal adaptive system,
and this in turn provides robustness to various unmodeled dynamics and disturbances. Input-
output formulations providing a local stability were developed in Kosut and Johnson(1984) and
Kosut and Anderson(1986); these also needed persistent excitation. In none of these examinations
of the stability properties of adaptive control systems was the precise mechanism for the parameter
drift instability identified, particularly for the counter-example posed by Rohrs -t al.(1982).

Method of Averaging The first insights came in a series of papers by Astrom(1983,1984),
which provided an analysis based on the classical method of averaging of Bogoliubov and Mitropol-
ski(1961). The method requires slow adaptation and/or small signal magnitudes, and under these
conditions Astrom was able to show heuristically the instability mechanism. This was made piecise
in a paper by Riedle and Kokotovic(1984,1985), where they established an average SPR condition
which provides a sharp stability-instability boundary, again in the case of slow adaptation with
periodic inputs, but only for the linearized adaptive system. The average SPR condition is sig-
nificantly less restrictive than the usual SPR condition because the latter requires that a certain
closed-loop transfer function be positive at all frequencies, whereas the former depends also on a
signal spectrum and requires that the energy at those frequencies where the transfer is positive
should dominate those frequencies where it is negative. This result put teeth into an obvious en-
gineering folk theorem. Extentions of this important result to other than periodic signals and the
relation to persistent excitation is provided in Kosut, Anderson, and Mareels(1986). Extending the
method of averaging to the full adaptive feedback case has also been developed, e.g., Riedle and
Kokotovic(1986), Kosut(1986), and Bodsen et al.(1986).

In the light of the new averaging results it is now possible to more fully understand the difficulties
with the MIT-Rule. It is clear what causes the instabilities, and most importaiLly, how to avoid
them. The MIT-Rule is 're-visited" with these new tools in hand in Mareels et al.(1986) and
Mareels(1986), and results are obtained which essentially extend the results of James(1971).

2.7.2 New Research Directions

The conclusion from this bit of history, particularly for adaptive control of LSS is this: the pa-
rameters for adaptation can correspond to physically meaningful parameters, rather than canonica1

parameters such as transfer function coefficients. Once having selected the critical parameters, the
parameter adaptive algorithm can be developed from the intuitively appealing MIT-Rule, or any
similar procedure. Having established the adjustment procedure, stability of the complete adap-
tive control system can be analyzed using the method of averaging. This will provide conditions
for instability which need to be either avoided, or if not, then provide guidelines for control law
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modifications.

Taking this approach is not as straight forward as it might sound. There are some pitfalls to
avoid and definitely areas where basic research is required. These include the following:

a The theoretical justification for the method of averaging is that a certain design parameter
(not one of the adaptive parameters) is sufficiently small. In adaptive systems, this design
parameter depends on the speed of adaptation and the magnitude of exogenous inputs such
as reference commands and disturbances. Current methods to predict the maximum size of
this parameter have been shown by simulation to be very conservative. That is, the stability
properties of the adaptive system as obtained from an averaging analysis, are consistent with
simulations even for parameter values which greatly exceed the theoretical limit. This is an
area which needs to be examined, since we do not want to be overly conservative.

* Averaging analysis works for slow parameter variation, because the parameters are then
not being radically affected by any transients. The restrictiveness of slow adaptation can be
removed, but this will require a better understanding of the transient behavior of the adaptive
system. Some preliminary results utilizing fixed-point theory and Floquet theory have been
examined in Kosut and Bitmead(1986, 1987). This is a most difficult problem, but the payoff
for LSS systems would be significant.

e Although the method of averaging in principal, involves straightforward calculations, even
simple examples can just barely be worked out by hand. It is clear that the level of complexity
of a realistic adaptive or otherwise nonlinear system is well beyond hand calculation. Hence,
for such powerful analytic methods to be of practical benefit, it is imperative to develop "user-
friendly" software tools which provide the requisite nonlinear analysis. At the present time,
aside from simulation capability, there are no available software tools for dealing principally
with adaptive systems, and certainly none for more general nonlinear systems. This is a
research issue in both mathematics and computation, and it is one that may prove essential
to some of the tasks we propose to undertake, although it is not a major thrust in our research
program. Nonethelesi, 't is sometimes an overlooked research issue, and thus warrants more
than a passing remark.

* The method of averaging so far has been extended and applied only for adaptive linear control
systems, that is, if the adaptive parameters were held fixed, then the resulting closed-loop
system would be linear. This is certainly not the case during rapid slewing maneuvers which
involve nonlinear kinematics as well as nonlinear control. Moreover, the control system itself
could be nonlinear, despite the fact that certain parameters can be adapted. For example, a
time-optimal control of a double integrator (e.g., a single point mass system) is a nonlinear
function of position and velocity. Although the method of averaging can handle nonlinear
systems in theory, see, e.g., Hale(1969), the application to adaptive nonlinear control remains
an open area for basic research.

I4



Chapter 3

Identification for Control Design

3.1 Introduction
# •

In order to evaluate a particular model parametrization in system identification, when the intended
use of the model is for control design, the analyst needs to specify:

e a representative "true" system

* a model parametrization

9 an estimation algorithm

e a set of closed-loop performance criteria

e a contol design approach or rule

3.2 "True" System vs. Model Set

The relation among these choices can be seen by considering the following example. Suppose the
,ue' system is an undamped elastic rod of length I with a torque u(t) applied at one end. Assuming
o external disturbances, the motion of the rod for small angular deflections is well approximated

by tb' partial differential equation

m(z)ztt(t, z) + [p(z)z(t, z)] = 0 (3.1)

with boundary conditions
z.(t,O) = -u(t)/p(O) , z-(t,t) = 0 (3.2)

where m(z) represents the tortional mass density, p(z) represents the tortional stiffness, and z(t, x)
is the angular position of the rod at time t and position x E (0,1]. Let y(t) denote the output of a
sensor which perfectly accurately measures the angular velocity of the rod at the actuator location
z = 0. Thus,

y(t) = z,(t,0) (3.3)
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It is clear that the relation between the actuator input u(t). and the velocity sensor output y(t) is
given by

y(t) = P0(s)u(t) (3.4)

where P.(s) is the transfer function1 from u(t) to y(t).

Suppose we now choose as a parametric model of (3.1) a uniform undamped elastic rod of
length 1, with the same torque u(t) applied at one end. Assuming no external disturbances, the
motion of the rod for small angular deflections is well approximated by the wave equation [see, e.g.,
Pichet(1985)]

pr2ztt(t, x) - GJz==(t, z) = 0 (3.5)

with boundary condiions

z(t,0) = -Zy-u(t), z1(t,I) = 0 (3.6)

where p is mass density, r 2 is radius of gyration, and GJ is the tortional stiffness. Define the
physical parameter vector

a = (f, 0) T ( p/r2GJ, (37

Then, the parametric model transfer function from u(t) to y(t) is

P(s, 0) -coth(ps) = 1 1 +- (3.8)a 1 - e -  , (.

which can be viewed as a physical parametrization.

Unless m(z) and p(z) in (3.1) are constant, it is unlikely that there exist any values of a and
/ in (3.8) such that P(s,9) = P.(s). However, there certainly could be model parameter values
which, for some class of functions m(z) and p(z), the model error P(8, 9) - P.(s) is sufficiently
small, in some sense, to satisfy closed loop performance demands. To be more precise about how
to measure model error, we briefly state some known results about robustness of feedback systems
to model error. 7

3.3 Conditions for Closed-Loop Stability Robustness

Suppose we have selected a control design rule which for every value of the physical parameter
vector 9 produces a feedback controller with transfer function C(s, 9), such that the feedback system
consisting of P(s, 9) and C(s, 9) is stable and also satisfies the performance demands. Then, this
same controller will also stabilize the true system P(s) if

IP(iW,O) - Po(j) • 1 + p(jwG)C(jj) < 1, Vw ER (3.9)

This is a typicJ result arising from robust control theory, see, e.g., IEEE Transactions on Au-
tomatic Control: Special Issue on Robust Control (1981). More recent results are more extensive
involving similar ideas but the formulations would take us too far afield in this discussion, see, e.g.,

'The term is used loosely. More precisely, y(t) = (P..)(t) where P. is a convolution operator with kernal p.(t)
whose Laplace transform, or 'transfer function', is Po(s).
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*Vidyasagar(1985). We remark that a similar result holds for discrete-time feedback systems. In
this case, the above condition becomes

IP(C ,S9) -,Po (ej') I + P(e,;)c(ew,e)l < 1, Vw E [-7r,w] (3.10)

where we use "z-transforms" rather than Laplace transforms for the discrete-time linear operators
P, P., and C. We will return to the sampled-data representation in the sequel.

an If for feedback design the above inequality is essentially what is needed to insure stability
robustness, then there is nothing particularly precious about the physical parametrization of (3.8).
One could just as well choose the canonical transfer function representation

P(s,0) = bis- +"" + bn (3.11)

an + +a1s "- I +"' (3.1+ an

where now 0 is the physical parameter vector

0 = (a,... ,an,bl,...,b,)T (3.12)

Observe that the physical parameters (a,#) uniquely determine the canonical parameters
(a,... ,a,,b,... ,bn), but the relationship is obviously complicated. The primary disadvantage
of using the canonical parameters is that there could be many more than the physical parameters,
especially in the case where good model accuracy is required over a wide band of frequencies. As
we have mentioned, however, it is in general Lauch easier to construct numerically stable parameter
estimation algorithms for canonical parameters than for physical parameters.

The above simple example illustrates the difficulties involved in choosing a model parametriza-
tion. Obviously the extention to the LSS environment is not so straightforward because of the
additional complexity generated by either the large physical size of the structure or the large num-
ber of modes within the controller bandwidth. Before discussing these issues we first review some
of the known results in the estimation of transfer functions from measured data.

3.4 Review of Transfer Function Estimation

The estimation of a system's transfer function from input-output data has, of course, a long his-
tory, and we will not attempt to document that here. There are many excellent survey articles and
textbooks that can be referenced, e.g., Jenkins and Watts(1968), Astrom and Eykhoff(1970), A uto-

L matica: Special Issue on Identification(Jan. 1981), Ljung and Soderstrom(1983), and Ljung(1987),
to name a few. These references clearly explain the theory and practice of both parametric and
non-parametric methods of transfer function estimation. Parametric methods usually involve the
minimization of some time-4ompin function of the parameters using an iterative or recursive al-
gorithm. Non-parametric methods involve the computation of correlation functions and/or their
respective spectral densities. In either case, it is possible to obtain theoretical results which provide
asymptotic expressions, as the data record length increases, for the mean-square-error (MSE) of
the transfer function estimate, which is precisely the quantity that reflects model accuracy.
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3.4.1 Sampled-data Representation and Data Structure

Suppose that the true plant system to be estimated can be described by the discrete-time relation 2

y(t) = P.(q)u(t) + d(t) (3.13)

where 1(t) and u(t) are the measured input and output, P.(q) is the transfer function, and d(t)

is the disturbance. It is further assumed that d(t) is the output of a linear system with transfer
function W0(q) which is driven by white noise v0(t) of intensity A,. Thus,

d(t) = Wo(q)vo(t) (3.14)

and hence, has the spectral density

S( IWo(e )12A, (3.15)

The estimation problem is to select out of a model set, an estimate of P.(q) and W.(q) from the
observed finite data record

z {Y(t),u(t):1 = 1,...,N} (3.16)

Observe that if P0(9) is the true continuous time transfer function, see, e.g., (3.1), then the sampled-
data representation is

P.(q) = (1 - q4')Z{IP(s)) (3.17)

where Z{.} denotes the usual z-transform operator.

3.4.2 Prediction Error Methods of Parameter Estimation

Parametric methods of identification proceed by first selecting a set of candidate parametric models
of the form:

y(t) = P(q, O)u(t) + W(q, O)v(t) (3.18)

where v(t) is a zero-mean white noise sequence of intensity A, and 0 E R P is a vector of model

parameters which can be either physical or canonical as previously discussed. Observe that if

P(s, 9) is the continuous time transfer function, e.g., (3.8), then the sampled-data representation is

P(q,O) = (1 - q-)Z{!P(s,0)) (3.19)

Practically every parameter estimation scheme is based on developing an on-line or off-line

procedure for selecting the model parameters 0 so as to minimize some function of the prediction

error,

r(t, 0) = W -1 (q, 0)[y(t) - P(q, O)u(t)] (3.20)

2We use t to denote sample times, i.e., t = 0, 1, 2, ... , etc; q is the shift operator where #z(t) = sQ + 1) and
q-1x(t) f= z(t - 1). Also, we use the term transfer function to denote an operator which depends on q.

31n this form the prediction error is optimal given the noise assumptions, i.e., the prediction error is the 'innova-

tions' sequence corresponding to the steady state Kalman filter tuned to the model and noise statistics. If nothing

is known about P(t), i.e., P(t) is bounded but otherwise unpredictable, then the predictor has the property that as

t - oo,cQ,#) -'().
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3.4.3 Least-Squares Criterion

For example, the least-squares estimate is

N VN(O) (3.21)

with IN

VN(N) = [L(q),(t,O)]2 (3.22)

where Y" is a subset of R P which consists of those constant 0 which stabilize the predictor, and L(q)
is a stable filter.

Techniques for computing iN involve either iterative or recursive algorithms, see, e.g., Ljung
and Sodestrom(1983), Ljung(1987). No matter how it is computed, it can be shown that for large
N,

/:,f YN (W ) 12
iN ; arg min QN(WM")IP(eJwO) U N(W)j -- (3.23)

with
QN(WI) L(e )UN(w) 1 2  (3.24)QN( ,) =,W(ej" ,O)

where YN(w) and UN(w) are the discrete Fourier transforms of u(t) and y(t), respectively, for
t = 1,...,N. Thus,

1N
YN(W) = -j"(t)e-"W (3.25)

and the same for UN(W). The above frequency domain expressions support the interpretation
that P(ej-, 9) is the best quadratic fit of the empirical transfer function estimate YN(W)/UN(w),
under the weighting function QN(W,O). Clearly this weight can be effected by the input spectrum
UN(w), the data filter L(ei"), and the noise model W(ew,G). These choices can be used to design
the estimation experiment so as to achieve the smallest possible model error as needed by control
design.

* * . ! r

3.4.4 Least-Peak Criterion

The estimation criterion can also be taken as

VN(O) = sup IL(q)e(t,6)j (3.26)
tEl,...,N

Estimators based on this criterion are known to be much sharper when the error is small, i.e., they
converge more rapidly than the least-squares estimate. Unfortunately, computational techniques
for computing this estimate have not been fully developed.

3.4.5 Computing Model Error: The Mean-Square-Error (MSE)

Suppose we ha ? computed iN. The next step is to form the transfer function estimates P(q, iN)

and W(q,09v). It is important when using these estimates in control design to be confident of
their accuracy ,s a function of N, the data record length. For example, if limN-..o N = 0,, then
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we would like to know the convergence rate as well as the properties of the limiting estimates
P(q,0.), W(q, 0.) with respect to the true system P.(q), W.(q). A knowlege of the mean-square-
error (MSE) between the estimated transfer function and the true system transfer function would
determine the requisite robustness of control that is required to use the transfer function estimate
for control design.

Expressions for the MSE are in general quite complicated. It is shown in Ljung(1987), under
fairly weak conditions on the model set, that with probability one,

1m N= 9 . (3.27) -
Ncoo

where

0. = arg min V(O) (3.28)9EY

= C[ 2 (t, 9)] (3.29)
Moreover, the quantity

VN'(ON - 0.) (3.30)

is asymptotically normal with zero mean and covariance matrix

R. = [Vf"(.)] lim E{N[Vk ( O.)ITVk( O.)}[ V "I( O.)] - l (3.31)
N~oo

where' and " denote differentiation with respect to 0, once and twice, respectively. Thus, for large
N, we have I

(0N- .)(iN - 0T )  "-R. (3.32)

Hence, the MSE for model error is, for large N:

C{IP(ewN) - Po(eiw)1 2) -IP(eJwO.) - Po(eJo)j 2 + _Lp1(ejw,9.)RPl(edw,0.)T (3.33)

This is a very important result, because it provides an analysis tool for computing the estimated
transfer function accuracy directly in terms of the transfer function for any parametrization. Hence,
any proposed estimator whose purpose is to asymptotically produce an estimate which minimizes
IV(O), can be evaluated independently from how the estimate is produced. In fact, the term above
which decays as /iN is the best that can be achieved by any on-line or off-line algorithm.

3.4.6 Non-Parametric Methods of Transfer Function Estimation

Parametric methods as we have discussed them, involve transfer function models which depend
on either physical or canonical parameters in a specified way. Methods which do not require such
structural knowledge or assumptions are referred to as non-parametric. For example, suppose that
the only assumption is that the system has a transfer function which is smooth in some sense.

Available methods for non-parametric transfer function estimation rely on estimating spectral
densities. The methods are based on time-series and Fourier analysis of finite data sequences. There 1
are many excellent textbooks on the subject, e.g., Jenkins and Watts(1968), Brillinger(1975), and
Priestly (1981).
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Just as in the parametric case, it is also possible to obtain expressions for the MSE for model
error. A typical approximation for large N is

C {IP(ejw) - P.(eo') 2}  M2 (-t)IR(w)I 2 + 1!L(-I)Sdd(W)S,.(W) (3.34)

where P(e jw) is the estimate of Po(eiw) obtained using spectral estimation techniques, and where

R(w) = '(0JW) + P w (e w)SU(w1)S.u(w) (3.35)

with ' and " here denoting differentiation with respect to w, once and twice, respectively. Also

MOy) =JW'WY(w) dw (3.36)

L(.y) -f', W(w)d. (3.37)

where Wy(w) is the lag window of width 1/7. The window is used to generate "smooth" spectral
estimates and as seen in the above expressions can be used to adjust the MSE. Typically, as -1
increases, the window becomes more narrow, M(7) decreases, and L(y) increases. Thus, as -y
increases, the first term (the bias) decreases, but the second term (the variance) increases. Clearly
for large N there is an optimal choice of lag window width to minimize the MSE for fixed N, and
this can be calculated; see Ljung (1987).

3.5 Application to LSS

The number of actual physical parameters in an LSS is extremely large. Direct parametrizations
involving these parameters is out of the question from a practical view. For example, consider the
following two modeling approaches: (1) finite element modeling, and (2) continuum modeling.

3.5.1 Finite Element Modeling

A typical finite element model has the form

M(0)q(t) + K(O)q(t) = Bu(t), y(t) = Cq(t) (3.38)

where q(t) E RI is a vector of nodal displacements (I is large), and y(t) and u(t) are the output and
input vectors, respectively. The I x I matrices M(O) and K(O) are the mass and stiffness matrices,
respectively. The matrices B and C depend only on the location of the point actuators and point -i

sensors and do not depend on the parameter vector 9 E RP.The elements of 8 consist of various
lengths, areas, mass densities, stiffness values, etc. If 0o is a nominal value, then for small parameter
deviations, the mass and stiffness matrices can be approximated by [see, e.g., McIntosh(1986)]

L MM(O) A Mo + ( - io)'M, (3.39)

P

K(O) 8o+ (, _ #,O)k.K, (3.40)
i=1

Suppose that the matrices {Mi,,Ki : i = 0,... ,p) and integers {rn,ki : i = 1,...,p} are known.
Then, the physical parameters can be taken as the parameter deviations from the nominal, i.e.,

S- o: i=o,...,
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3.5.2 Continuum Modeling

It is often possible to approximate a complicated structure with a simpler structure. For example,
consider the parametric continuum model

m(z, O)ztt(t, z) + [p(z, 9)z..(t, )] = f(t, X) (3.41)

where here we take m(z,9) as the mass density, p(z,9) as the elastic modulus, and f(t,z) as the
force distribution on the structure. Observe that the parameter vector 9 is used to adjust the
spatially varying mass density and elastic modulus. In our simple tortional rod example we have =
assumed uniformity, and thus, the parametrization is given by m(x, 9) = 01, p(x, 02) = 02, with
the parameter vector OT = (91, 02). More sophisticated functions will undoubtedly be necessary to
model LSS. For example, cubic spline functions are examined in Banks and Crowley(1981,1982).

e . I l

3.5.3 Spatial Measurements

Consider again the wave equation (3.5) with boundary conditions (3.6). If measurements are
available of zut(t, x) and z._(t, z) at a point z = z on the structure, then a natural choice for the
prediction error is

e(t, 0) = ezs(t, zo) - 02 zxx(t, z) (3.42)

Clearly then, estimation of the physical parameters is direct. The problem is that the assumed
measurements are not available. These could, however, be estimated from position and rate mea-
surements along the structure. Suppose we have measurements of z(t, zo), z(t, z . A), Zt(t, zo),
where A is a small spatial distance. Then, an estimate of ztt(t, xo) is

(8-

itu(t, Z.) = ST + 1) Z' (t, X.) (3.43)

and an estimate of z==(t, Zo) is

i,(t, x.) = 2[z(t, xo + A) - 2z(t,z,) + z(t, zo - A)] (3.44)

The prediction error, based on measurements, which can now be used in the estimation algorithm
is

E(t, 9) = a, !t(t, zo) - 0 2Ax(t, Zo) (3.45)

Thus, the use of spatial measurements can simplify the physical parametrization of transfer function
models. We remark that the spatial measurements might not be just position and velocity but might
involve the outputs of very many strain gauges placed appropriately on the structure.

3.6 Uncertainty Estimation

The basic idea is to postulate a parametric model with two types of parameters, say Ph E Rl" and
Pox E R1. The Ph parameters correspond to, say, physical parameters in the usual sense of model
building, but the 0"I1 parameters are auxiliary and used to account for poorly known aspects of
the system dynamics. To illustrate the point further, let the parametric transfer function model
P(q, 9) have the decomposition

P(q,) Pq,9 Oph )P(q, fGt) (3.46)
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Figure 3.1: A generic parametric model structure

where P(q, Ph) is the usual parametric model and where P(q, 04u) is a simple parametric structure
which accounts for unmodeled dynamics.

Obviously more elaborate forms can be established depending on the kind of a priori knowl- 4
edge available regarding the location and type of unmodeled or poorly known dynamics. A pro-
posed generic form is shown in Figure 3.1, where G(q) is a known interconnection transfer matrix,
K(q, P'h ) contains all the known parametric stucture, and L(q,O'1) represents the poorly known
dynamics. The true plant would be represented by the corresponding triple Go(q), Ko(q), Lo(q).

This model is useful for control design if the parameters P'h and r'u can be separately calculated
as in Kosut(1987a,b). Then a non-parametric method can be used to estimate the model error
between the estimated system G(q), K(q, 0Ph), L(q, &'-) and the true system G(q), K0 (q), Io(q).
Moreover, the variance of parameter estimates can be utilized in assessing the structure of parameter
uncertainty. When this procedure is coupled together with the previously discussed controller
sysnthesis methods , we then have an on-line robust control design scheme, what is referred to as
adaptive calibration.

3.7 Computing the Estimate

In general, adaptive algorithms share a similar genesis and purpose, namely to adjust a parameter
vector i(t) to asymptotically approach a member of the set

-P= { E R. : 0 = argmin J(R)1 (3.47)

where '

J(O) = avg{E2(t,8)) (3.48)
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with the averaging operator defined by .1 T

avg{X(t)} = Timrn X(t)dt (3.49)

The adaptation error r(t, 9) is formed with i(t) held constant at 0. This error signal can be the
prediction error as described before in (3.20), or can be obtained from the adaptive feedback system
in Figure 2.3 as the tracking error

c(t,e) = y(t)Ji()=g - r(t) (3.50)

In the ideal case, the parametrization can be selected so as to achieve what is called perfect
matching, i.e., for some restricted class of exogenous inputs (usually no disturbances), and a suffi-
cient number of parameters (no unmodeled dynamics), the set Yot has a single member such that
limt.o.o e(t, 0) --+ 0 (or white noise in the stochastic case). This is usually never the case.

Under more realistic conditions, the best that can happen [see, e.g., Anderson et al.(1986)] is
that i(t) asymptotically approaches a small neighborhood of a local minima of J(8), i.e., the set

0 : J(O) = 0, J(8) > 0) (3.51)

3.7.1 Gradient Algorithms

For the purposes of illustration we will assume that parameter adjustments are continuous. In
practice the adjustments are at discrete times. Then, assuming continuous adjustments, one method
to achieve i(t) -+ Y'ot is to adjust 6(t) in the negative gradient direction of the instantaneous
squared error, that is, let

OW f T , 8 )}9 I S) (3.52)

Hence, the parameter adaptive algorithm is

O(t) = 7-W(t)4(t) (3.53)

where -7 is a positive constant, and

C(t) = E(t,9)8=§(t) (3.54)
OWt = 0 (t'0)l,=i(,) (3.55)

with the error gradient
b(t,O) = --8 oe(t,9) (3.56)

3.7.2 Gauss-Newton Algorithm
e . , *

If the parameter vector is adjusted to account for second order effects, then the resulting algorithm
is

9(t) = R(3.57)
where k(t) = O(t),T(t) 

(3.58)

This algorithm has the same form as the recursive-least-squares (RLS) algorithm. The matrix R(t)
is approximately the inverse of the covariance of the parameter error. --
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3.7.3 Constructing the Error Gradient from Measured Signals

3 A difficulty with constructing the above gradient algorithm is that the error gradient t(t,9) is a
function of the true, but unknown plant. The actual algorithm uses an approximation 0(t, 0), and 4
thus

0(t) =(3.59)

where 0(t), referred to as the regressor, is given by

-. 0(t) = 0(t,9)fle=m(,) (3.60)

For example, consider the wave model of the uniform rod in (3.8), which can also be expressed
as

a[y(t) - y(t - 20)] = u(t) + u(t - 2,3) (3.61)

The parameter vector is 0T = (a /). Let the adaptive error signal be the equation error q

e(t, 9) = a[y(t) - y(t - 23)] - u(t) - u(t - 2/3) (3.62)

The negative gradient of the error is then

- 6)= ( t- (,) )= ( --2[a( -20) + fi(t - 2,3)]

If y(t) and il(t) are not available, then the actual gradient 0(t, 0) can be approximated by

y- 20, ) -y
0( =0 - (-) [y(t - 2,3) + u(t - 2/(3)6)

where the filter time constant r is a design choice.

3.7.4 Algorithm Modifications

To insure that adaptive algorithms are working, one often includes various "safety nets" or Al fea-
tures. For example, in uncertainty estimation, the controller is not changed until some level of con-
fidence is established. Other AI features include monitoring of information, covariance monitoring,
perisitent excitation cpnditioing, and parameter projection, to name a few. Various normalizations
of the measured sugnals also enhance the ability of adaptive systems to insure bounded parame-
ter values. These latter approaches need prior information regarding model error and parameter
ranges.

As an example, consider the Gauss-Newton algorithm with "covariance" resetting. That is, set

R(ti) R_ RT > 0 (3.65)

where the reset times {ti) are found fro-

t1 = til + min{6 ,(t)OT(t) dt > ,) (3.66)

where to = 0. These reset times are essentially those where sufficient information is gathered.
Usually the controller is adjusted only at these times, i.e., controller adjustment takes place when
the model estimate is good.
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3.7.5 Performance of the Algorithm

Despite the above approximation, from a practical point of view it is certainly acceptable that the
parameters approach and remain in a small neighborhood of .", provided that members of this set
also produce acceptable performance.

Assuming this is so, let 9. E RP denote such a setting, of which there could be many. We refer
to each 9. as a tuned parameter and to the corresponding feedback system as the tuned system [see,
e.g., Kosut and Friedlander(1985)]. Clearly the tuned system is the feedback system above with
0(t) fixed at 0.. We can now pose the following questions regarding the adaptive system:

1. How do the tuned parameters depend on the exogenous inputs?

2. Is the adaptive system stable in a neighborhood of the tuned system. Furthermore, how small
is this neighborhood?

3. What is the region of attraction to a small neighborhood of the tuned system.

4. What is the rate of convergence to this small neighborhood.

Some of these questions can be answered by the method of averaging which is discussed in the
following section.

3.8 Averaging Analysis of Stability and Convergence

3.8.1 Method of Averaging

The classical method'of avraging applies to a differential equation of the form

z = 'f(t, z), -y > 0 (3.67)

where "y is a positive constant. If y is sufficiently small then under suitable regularity conditions on
f(t, z), the stability of the above time-varying system is inherited from the stability of the simpler
autonomous system

= 7f.(.) (3.68)

where
f.(z) - avg{f(t, z)} (3.69)

This system is referred to as the averaged system. Observe that for f.(z) to exist, some other
restrictions must also apply to f(t, z), e.g., f(t, z) is almost periodic in t uniformly for z in a
compact set; although weaker conditions can be stated.

The above type of result is certainly expected on intuitive grounds, provided that f(t, z) is
smooth enough and the average value f.(z) exists. A precise formulation of the stability-instability
conditions is given in Theorem V.3.1, Hale(1969).

In the adaptive system we examine the "average" parameter trajectories ensuing from

Syf (a.) (3.70)

36



where the adaptive parameter vector field is given by

f(0) = avg{ (t, 0)e(t, 0)} (3.71)

The q-lestion is then to determine conditions under which the behavior of the actual parameter

trajec ories is like that of the average parameter trajectories. Using the above averaging theory,

analysis of the adaptive system can be divided into answering questions about its asymptotic and

transient characteristics.

3.8.2 Asymptotic Analysis

The definition of the tuned system as well as the stability of the adaptive system in the neighborhood

of the tuned system can be answered by Theorem 4.2 in Anderson et al.(1986) or Section 3 in Bodson

et al.(1985). The flavor of these results can be stated as follows:

THEOREM 1 Let the tuned parameter set be defined as those 0. E R P which stabilize the feedback

system and which also satisfy
avg{f(t, 0.)) = 0 (3.72)

If the functions f(t, 0), 0(t, 0) and e(t, 0) are sufficiently smooth, almost periodic in t uniformly for

0 in compact sets, then for a sufficiently small adaptation gain y, and a sufficiently small peak

value of the tuned error signal c(t,0.), solutions of the adaptive system originating in a small

neighborhood of the tuned soluti6ns 0.,40(t,0.), and e(t,0.), will remain there if

max ReA,[B(0.)] < 0 (3.73)

and, moreover, will leave there if
max ReA\i[B(O.)] > 0 (3.74)

where the matrix function 0 -i B(8) is given by

* B(P) = FO-avg{f(t, 0)) (3.75) d

In addition, if the tuned solution is stable, that is, if maxi ReAi[B(O.)) < 0, then

limsup li(t) -. 11 = O(limsup I.(t)l) + o(-) (3.76)
t-00o t-00

limsupllii(t)I = 0(7) (3.77)
t-00

The type of smoothness conditions required of the functions f(t, 9), 4(t, 0), and e(t,0) is not

severe, e.g., continuity in t and Lipschitz continuity in 0 for 0 in compact sets.

L The sharp stability-instability boundary expressed above allows not only for an assessment of

a particular design, but also indicates how to modify and improve the algorithm.

3.8.3 Transient Analysis

An understanding of the transient properties of the adaptive system requires answering the ques-

tions posed before, namely, determining the region of attraction to a small neighborhood of the
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tuned system, and the rate of convergence. The folowing result, based on averaging, can be found
in Anderson et al.(1986).

THEOREM 2 Under the conditions stated in Theorem 1, if the initial parameter value k0 is
strictly inside a convex subset of the constant parameter stability set, then i(t) will remain in that
set and converge exponentially at a rate no slower than 0(7) to the small neighborhood of the tuned
system defined in Theorem 1.

Some of the restrictions can be relaxed, see, e.g., Riedle and Kokotovic(1986) or Bodson et
al.(1985). Specifically, the region of attraction can be relaxed to a compact subset of the constant
parameter stability set; also, estimates of the rate of convergence far from the tuned setting do not
have to be 0(7).

These type of results are pleasing from an intuitive point of view, thus providing a qualitative
analysis. However, they do not apply when the parameters leave the constant parameter stability
set, nor do they provide quantitative performance measures. In addition, we still require slow
adaptation, which in itself is not too objectionable, perhaps only cautious, but again specific bounds
on the adaption gain extracted from the theory tend to be extremely conservativ".

38



3.9 References

"Active Control of Space Structures (ACOSS)", Phase la final report, prepared by LMSC for Darpa
under contract F30602-80-C-0087, Aug. 1981.

B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V. Kokotovic, R.L. Kosut, I.M.Y. Mareels,
L. Praly, and B.D. Riedle, (1986),Stability of Adaptive Systems: Passivity and Averaging Analysis,
MIT Press, 1986.

B.D.O. Anderson and, R.M, Johnstone (1983), "Adaptive Systems and Time- Varying Plants", Int.

J. Control, Vol. 37, No. 2, pp.367-377.

B.D.O. Anderson and J.B. Moore, (1979), Optimal Filtering, Prentice-Hall, NJ.

K.J.Astrom (1983),"Analysis of Rohrs Counter-Examples to Adaptive Control", Proc. 22nd IEEE
Conf on Dec. and Contr., San Antonio, TX.

K.J.Astrom (1984),"Interactions Between Excitation and Unmodeled Dynamics in Adaptive Con-
trol",Proc. 23rd IEEE Con. on Dec. and Contr.,Las Vegas, NV, pp.1276-1281.

K.J. Astrom and P. Eykhoff (1971), "System Identification-A survey", Automatica, 7:123-167.

M. Athans et al. (1977), "The Stochastic Control of the F-8C Aircraft Using A Multiple Model
Adaptive Control (MMAC) Method", IEEE Trans. Aut. Contr., vol AC-22, no 5, pp 768-780, Oct.

J.N. Aubrun et al. (1979),"Stability Augmentation for Flexible Structures", Proc. IEEE CDC,
Hollywood, FL, Dec. 1979.

H.T. Banks, J.M. Crowley, and K. Kunisch, (1983) "Cubic Spline Approximation Techniques for
Parameter Estimation in Distributed Systems", IEEE Trans. on Aut. Contr., vol. AC-28, no. 7,
July 1983.

W. H. Bennett, H.G. Kwatny, and J.S. Baras, (1987), "Robustness Issues in Boundary Feedback
Control of Flexible Structures", Proc. 1987 ACC, pp. 1307-1313, Minn., MN, June 1987.

A. Bhaya and C.A. Desoer, (1985),"On the Design of Large Flexible Space Structures (LFSS)",
IEEE Trans. Aut. Contr., vol AC-30, no 11, Nov. 1985.

N.N. Bogoliuboff and Y.A. Mitropolskii (1961) Asymptotic methods in the theory of Nonlinear

Oscillators, Gordon and Breach, New York.

M. Bodson, S. Sastry, B.D.O. Anderson, I. Mareels, and R.R. Bitmead, (1986), "Nonlinear Aver-

aging Theorems, and the Determination of Parameter Convergence Rates in Adaptive Control",

Systems and Contr. Letters, to appear.

A. Bryson (1977), Guest Editorial in Mini-Issue on NASA's Adavanced Control Law Program for

the F-8 DFBW Aircraft, IEEE Trans. Aut. Control, Vol. AC-22, No.5, Oct. 1977.

M. Bodson, S. Sastry, B.D.O. Anderson, I. Mareels, and R.R. Bitmead, (1986), "Nonlinear Aver-

aging Theorems, and the Determination of Parameter Convergence Rates in Adaptive Control",
Systems and Contr. Letters, to appear.

S. Boyd et al. (1986), "A New CAD Method and Associated Architectures for Linear Controllers",

ISL Tech. Report L-104-81,1, Stanford University, Dec. 1986.

D.R. Brillinger (1975), Time Series: Data Analysis and Theory, Holt, Rinehart, and Wintron, New

York.

39



C.A Deoer RW. iuJ.Murray and R. Sacks (1980), "Feedback System Design: Th: Fractional
Repesetaton ppoac toAnaysi ad Snthsis, IEETrans. Aut. Control, Vol. AC-25,

C.A.Deser nd . Vdyaaga, Fedbck ystms:Input-OutputPrptisAcdmcre,
* 1975.

J.C. Doyle and C.C. Chu (1985), "Robust Control of Multivariable and Large Scale Systems",
Honeywell SRC: Final Technical Report on AFOSR Contract F49620-84-C-0088, March 1986.

E. Denman et al. (1986), Identification of Large Space Structures on Orbit, Final Report AFRPL-
TR-86-054, F04611-85-C-0092.

B. Egardt (1979), Stability of Adaptive Systems, Springer-Verlag.

R.E. Goodson and M. Polis (1974), ed., Identification of Para'.meters in Distributed Systems, The
American Society of Mechanical Engineers, New York.

* G.C. Goodwin and K.S. Sin (1984), Adaptive Filtering, Prediction, and Control, Prentice-Hall, New
Jersey.

G.C. Goodwin and R.L. Payne, (1977) Dynamic System Identification: Experiment Design and
Data Analysis, Academic Press, New York

P. Hagerdorn (1985), "On a New Concept of active Vibration Damping of Elastic Structures",
presented at Structural Dynamics Symp., Univ. of Waterloo, July 1985.

J .K. Hae(90,Ordinary Differential Equations, Kreiger, Molaban, FL, originally published
(1969), Wly(hIterscience), New York.

A.J. Helmicki, C.A. Jacobsoil, aiid C.N. Nett, (1987),"Furidamentals of Practical Controller Design

for LTI Plants with Distributed Parameters", Proc. 1987 ACC, pp 1203-1208, Minn., MN, June

P.A. Ioannou and P.V. Kokotovic (1983) Adaptive Systems with reduced models, Springer-Verlag,
New york.

D.J.G. James (1971),"Stability of a Model Reference Control System", AIAA Journal, Vol. 9,
pp.950-952.

R.L. Kosut, B.D.O. Anderson, and I.M.Y. Mareels,(1987), "Stability Theory for Adaptive Systems:
Methods of Averaging and Persistency of Excitation", IEEE Trans. on Aut. Con tr., Vol. AC-32,
No. 1, pp. 20-34, Jan. 1987.

R.L.Kosut, I.M.Y.Mareels, B.D.O.Anderson, R.R.Bitmead, and C.R. Johnson, Jr., (1987),"Tran-
sent Analysis of Adaptive Control", Proc. IFAC, 10th World Congress, Munich, Germany, July 1987.

R.L. Kosut and R.R. Bituiead (1986), "Fixed Point Theorems for the Stability Analysis of Adaptive
SysemsIFAC Workshop on Adaptive Control, AC-30:834.

tems", IE Trn.At.Contr., Jan. 1986.

R.L. Kosut and B. Friedlander (1985), "Robust Adaptive Control: Conditions for Global Stability",
IEEE Trans. on Aut. Contr., AC-30(7):610-624.

R..L. Kosut and C.R. Johnson, Jr. (1984), "An Input-Output View of Robustness in Adaptive
Control", Automatica, 20(5)569-581.

40



R.L. Kosut, (1986), ",Adaptiyve Calibration: An Approach to Uncertainty Modeling and On-Line
Robust Control Design", Proc. 25th IEEE CDC, Athens, Greece, Dec. 1986.

R.L. Kosut (1987a), "Adaptive Uncertainty Modeling", Proc. 1987 ACC, June 10-12, 1987, Minn.,

MN.

R.L. Kosut (1987b), "Adaptive Control of Large Space Structures: Uncertainty Estimation and
Robust Control Calibration", Large Space Structures: Dynamics and Control, ed. S.N. Atluri and
A.K. Amos, Springer-Verlag, to appear.

R.L. Kosut, H. Salzwedal, and A. Emami, (1983), "Robust Control of Flexible Structures", AIAA
J. Guid. Contr., vol 6, no 2, Mar-Apr 1983.

L. Ljung and T. Soderstrom (1983), Theory and Practice of Recursive Identification, MIT Press.

L. Ljung (1977),"On Positive real Transfer functions and the Convergence of some Recursive
Schemes",IEEE Trans. Auto. Control, Vol. AC-22, pp.539- 551.

S.D. Mcintosh, Jr. and M.A. Floyd, (1985), "Investigation of Interactive Structural and Controller
Synthesis for Large Spacecraft", final report for AFOSR contract F49620-84-C-0025.

I.M.Y. Mareels, B.D.O. Anderson, R.R. Bitmead, M. Bodson, and S. Sastry (1986), "Revisiting the
MIT-Rule for Adaptive Control", Proc. 2nd IFAC Workshop on Adaptive Systems, Lund, Sweden.

R.V. Monopoli (1974),"Model Reference Adaptive Copntrol with an Augmented Error Signal",
IEEE Trans. Auto. Control, AC-19, pp.474-484.

K.S. Narendra, Y.H. Lin, and L. Valavani, "Stable Adaptive Control Design, Part II: Proof of
Stability", IEEE Trans. Auto. Control, Vol. AC-25, No. 3, pp.440-449.

C.N. Nett, C.A. Jacobson, and M.J. Balas, (1984), "A Connection Between State Space and Doubly
Coprime Fractional Representations", IEEE Trans. Aut. Contr., vol 29, pp831-832.

P.V. Osburn, H.P. Whitaker, and A. Kezer (1961),"New Developments in the Design of Model
Reference Adaptive control", Inst. Aeronautical Sciences, Paper 61-39.

P.C. Parks (1966),"Lyapunov Redesign of Model Reference Adaptive Control Systems", IEEE
Trans. Auto. Control, Vol. AC-11, pp.362-367.

R. Pichet, (1985), Frequency Domain Continuum Modeling and Control of Third-Generation Space-
craft, Tech. Report, Univ. of Waterloo, Ontario, Canada.

B.D. Riedle and P.V. Kokotovic (1986), "Integral Manifolds of Slow Adaptation", IEEE Trans.
Aut. Control, Vol. 31, No. 4, pp. 316-324, April 1986.

B.D. Riedle and P.V. Kokotovic (1985), "A Stability-Instability Boundary for Disturbance-Free
Slow Adaptation and Unmodeled Dynamics", IEEE Trans. on Aut. Contr., AC-30:1027-1030.

C.E.Rohrs, L.S.Valavani, M.Athans, and G.Stein (1985),"Robustness of Continuous Time Adaptive
Control Algorithms i'n the" Presence of Unmodeled Dynamics",IEEE Trans. Aut. Contr., AC-
30(9):881-889, Sept.

E. Rafajlowicz (1983), "Optimal Experiment Design for Identification of Linear Distributed-Parameter
Systems: Frequency Domain Approach", IEEE Trans. Aut. Contr., vol AC-28, no.7, July 1983.

M.G. Safonov, A.L. Laub, and G.L. Hartmann, (1981),"Feedback Properties of Multivariable Sys-
tems: The Role and Use of The Return Difference Matrix", IEEE Trans. Aut. Contr., vol AC-26,
Feb. 1981.

41



D.B. Schaechter (1982), "Estimation of Distributed Parameter Systems", AIAA J. Guid. and
Contr., vol 5, no 1, Jan-Feb 1982.

D.B. Schaechter (1986), "Estimation of Distributed Parameter Systems: Some Closed Form Solu- --

tions", AIAA J. Guid. and Contr., vol 9, no 4, July-Aug 1986.

A.H. von Flotow, (1984), Disturbance Propagation in Structural Networks: Control of Large Space
Structures, Ph.D. Dissertation, Stanford University, Stanford, CA, June 1984.

M. Vidyasagar,(1984), "The Graph Metric for Unstable Plants and Robustness Estimates for Feed-
back Stability", IEEE Trans. Auto. Contr., AC-29:403-418, May 1984.

M. Vidyasagar (1985), Control system Synthesis: A Factorization Approach, MIT Press, Cam-
bridge, MA, 1985.

H.P. Whitaker (1959),"An Adaptive System for the Control of Aircraft and Spacecraft", Inst.
Aeronautical Sciences, Paper 59-100.

D.C. Youla, H.A. Jabr, and J.J. Bongiorno, Jr. (1976), "Modern Wiener-Hopf Design of Optimal
Controllers, Part II: The Multivariable Case", IEEE Trans. Aut. Contr., vol AC-21, pp 319-338,
June 1976.

G. Zames and B.A. Francis, (1983) "A New Approach to Classical Frequency Methods: Feedback
and Minimax Sensitivity", IEEE Trans. Auto. Contr., AC-28:585--601, May 1983.

G. Zames, "Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative
Seminorms and Approximate Inverses", IEEE Trans. Auto. Contr., AC-26:301-320, April 1981.

42



Appendix A

Reprints of Selected Publications

A few recent publications are appended in this section.

4

I ;

* I r

43



Adaptive Control of Large Space Structures:

Uncertainty Estimation and Robust Control Calibration,

Robert L. Kosut 2

Abstract

An approach is presented to the problem of designing a robust control using on-line mea-
0= surements. The idea is to use standard methods of parametric system identification to obtain

a nominal estimate of the plant transfer function. Non-parametric spectral methods are then
used to obtain a frequency domian expression for model uncertainty. If the model uncertainty
exceeds a specified frequency bound, which has been predetermined from the nominal model
and the performance criteria, then data filters used in the system identification are modified
and the procedure is repeated. An analysis is presented which establishes conditions under
which the procedure will actually converge to a satisfactory robust design. An example is
provided which illustrates the method and supporting analysis.

r1 Introduction

Large space structure (LSS) systems impose stringent performance demands, and hence, feedback
designs will of necessity be based on very accurate models. Houover, the on-orbit dynamics
will not be sufficiently like those obtained from either ground-testing or even from sophisticated
computer generated modeling techniques, e.g., finite element modeling. Therefore, it is necessary
to be able to identify -,he LSS dynamics directly from on-orbit measurements, and simultaneously,
tune or re-design the control. Hence, the control design cycle is an adaptive process, typically
starting with a nominal low-performance design based on a coarse model, and then re-designed
from on-orbit data.

*n This paper addresses some of the issues involved in the adaptive control of LSS systems,
specifically the problem of vibration suppression.

1.1 Adaptive Control

Adaptive control, as depicted in Figure 1, essentially consists of two processes, namely: (1) a
model parameter estimator which uses a finite data record of input-output measurements, and
(2) a control design rule which transforms the model parameter estimates into control parameters.

The procedure can go awry mainly because the model estimate is not sufficiently accurate and
the control design rule effectively assumes that the estimates are perfectly accurate. Although
the procedure may work well whenever the parameter estimates are in a good region, they may
never get there.

One route around this problem is to prove that it can never occur, which involves analyzing the
complete adaptive system. For example, analysis techniques based on the method of averaging
can provide an assessment of the adaptive systems robustness, e.g., Anderson et al.(1986).

IReseardh supported by AFOSR, Directorate of Aerospace Sciences, under contract F49620-85-C-0094.
2R.L. Koaut is a Senior Scientist with Integrated Systems, Inc., 2500 Mission College Blvd., Santa Clara, CA

95054, and a Consulting Professor with the Information Systems Lab, Stanford U..iversity, Stanford, CA 95305.
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Figure 1: Adaptive Control

Another route, explored here, is to modify the process so that along with estimating model
parameters, a measure of model uncertainty is also obtained. With such an estimate in hand
the control design rule can be modified to account for the, model uncertainty. If the resulting
controller is too cautious, because the model estimate is too uncertain, then it is necessary to
repeat the estimation procedure so as to obtain a better model.

In this paper we will concentrate on a particular procedure for obtaining a measure of model
uncertainty for linear time invariant plants. The process is referred to as adaptive uncertainty _
modeling and the outcome is a frequency domain expression for the model uncertainty. The mo-
tivation arises from robust control theory which utilizes frequency domain expressions for char-
acterizing a set of uncertainty within which lies the true plant, e.g., Francis and Zames(1984),
Safonov et al.(1981), Doyle and Chu(1986), Vidyasagar(1985). An adaptive control system, mod-
ified so that it produces a set of uncertainty, is depicted in Figure 2.

Set of Oucetaitty

Coutrol Design Es-timator

Control
Parameters

Reference

Figure 2: Adaptive Control with Uncertainty Estimator

The indicated adaptive process is referred to here as adaptive calibration, Kosut(19S6,1987).
The set of uncertainty is extracted from input-output measurements. We will describe one ap-
proach to this problem which uses a combination of parametric prediction error methods together



with standard non-parametric (spectral) estimation methods. We then show how the set of uncer-
tainty produced by the modified identifier allows for performance evaluation before the controller
is adjusted. If the predicted performance is not satisfactory then the identification process is
repeated under different conditions which will reduce model uncertainty where needed. The re-
sulting controller is designed to be robust with respect to the estimated set of uncertainty. Thus,
a large set of uncertainty requires a cautious or low authority controller, whereas a small set of
uncertainty will result in a high authority controller. Observe that the order of the controller can
vary with the set of uncertainty.

This paper is organized as follows: Section 2 develops the sampled-data linear transfer function
model. Section 3 states some known results regarding stabilization and robustness of linear
control systems. Section 4 is the main section, decribing in detail an approach to estimating
the set of uncertainty and a procedure for adaptive calibration for both open-loop and closed-
loop situations. Section 5 presents an example of uncertainty estimation from experimental data.
Section 6 contains concluding remarks.

2 Linear Flexible Dynamics

2.1 Transfer Function Model

Under the assumptions of linear elasticity and small deflections, at any time t and position r on
the structure, the deflections are given by

y(t, r) = (t)Ok(r) (1)
k:=O

where Ok(r) is the kth mode shape at position r, and itk(t) is the kth modal amplitude as a
function of time. The upper limit I in the above sum is theoretically infinite, but for all practical
purposes can be considered here to be finite, but extremely large. Assuming there are point
actuators located at the discrete positions r.,. .. , ram., then the modal amplitudes each satisfy

6k(t) + 2 kfi) k(t) + rk(t) = Iu,(t)0k(r,), k = 1,2,... , t (2)

where flk and Ck are the kth modal frequency and damping, respectively, and where ui(t) is the
ith actuator force or torque on the structure. A position sensor located at r would measure

yp(t,= r) rk(t)Ok(r) (3)
k=O

Likewise, a velocity sensor at r would measure

y.(t, r) = ?k(t)O/k(r) (4)
k=o-

Suppose that actuators are placed at r6 ,... , rm,., position sensors at r,... , rpm,, and velocity
sensors at r,,1,..., r,,,.n Then, the transfer function from the ith applied force to the jth position
or velocity sensor output is then, respectively

1 1
(, = (rj)¢(r,~). + 2 (kk += ()

(6)

= 52 + 2(kfks + fJ (7)
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For purposes of illustration, suppose that there is only one position sensor at rp and one actuator,
not located at the same position as the sensor, but at r,. Let y(t) denote the output of the
position sensor. Since disturbance forces act on the structure and the sensors have some noise
component, the actual sensor output will read 3

y~t) =- G(s)u~t) + d(t) (8)

where d(t) is the cumulative effect of disturbances and noise sources as seen at the output, and
where G(s) is the transfer function from actuator to sensor location. Thus,

G(S) s2 + 2CWIks + n2 (0) -
k= kfi

where
O k = Ok(rp)Ok(ro) (10)

2.2 Sampled-Data Representation

Assume that control commands and data acqusition occur at discrete sampling instances separated
by uniform sampling intervals of duration t.. = I/Q,, seconds, where f?.. is the sampling frequency

* in Hz. Thus, u(t) is constant between samples, i.e., for any integer k,

u(t) = U(tk), t E [tk,tk+l) (n)

where t k = kt,.. If, in addition, the sensor output is sampled at the same instances, then the
S.-. discrete-time representation of (8) is

"(tk) Po(q)u(tk) + d(tk) (12)

where Po(q) is the zero-order hold equivalent of G(s), expressed as a function of the shift operator
q defined by qX(tk) = X(tk+1) and q-'X(tk) = x(tk-.1). Thus, in terms of the usual "z-transform"
operator Z(.), we have

Poq) = (1 - q-)Z{P(s)/s) (13)

Using (9) gives
1 1 I P(14)

POWq = Z(1 q 1 )Z{- 2 + 2Cklflks + CF2
k=1 

k

In order to simplify the notation in the sequel, time will be normalized with respect to the
sampling instants. That is, the discrete-time representation of the LSS will be written compactly

"* as
y(t) = Po(q)u(t) + d(t) (15)

where t takes on integer values only, i.e., t = 1,2,..., and the shift operator is normalized so
that qx(t) = z(t + 1) and q-1x(t) = x(t - 1). We will take (15) as the true LSS system and the
measured data record as

zN = {y(t),u(t): t = 1,...,N} (16)

'The variable s is uscd to denote Either the Laplace transfori variable or the differential operator d/di, depending
on the context.



2.3 Disturbance Spectrum .4

Assume that d(t) is a zero-mean sequence with spectral density Sdd(w), where w is normalized
frequency in the interval [-w, 7r]. The spectral density is defined as the Fourier transform of the
auto-correlation function Rdd(r), that is

Sdd(W) =E Rdd(r)e- ' - (17)

where, following Ljung(1987),

) 1 N
Rdd(r) = Zm V E,6{d(t)d(t + r)} (18)

N-o t=i

where C{.) is the usual expectation operator. Observe that if d(t) is either a stationary stochastic
process or a periodic deterministic sequence, then the auto-correlation function as defined above
will exist. Such sequences are said to be quasi-stationary.

A convenient representation of the disturbance is that it is the o-tput of a stable system with -
transfer function Ho(q) and input w(t), a zero-mean sequence with constant spectrum S..(w) =

a." e.g., white noise. Hence, the auto-correlation is an impulse function, and furthermore

Sdd(W) = oo2Ho(e )12  (19)

3 Linear Control Design

3.1 Stabilization and Robustness

Before designing an adaptive control we first consider the problem of designing a robust non-
adaptive control where the following information is assumed to be known: (i) a nominal model
of the LSS, and (ii) a description of the accuracy of the model, e.g., model error as a function of
frequency. In this section we state some known results regarding the stabilization and robustness
properties of feedback systems using the above information.

Consider the linear scalar feedback system depicted in Figure 3, with reference input r(t),
disturbance d(t), control actuator input u(t), and sensor output y(t). The transfer functions of
the plant and feedback compensator are P(q) and C(q), respectively.

d(t)d~t) Y__)
r ~P(q) ).

Figure 3: Linear Feedback System

Following Vidyasagar(1985), let S denote the set of transfer functions which are rational in
q-1 (ratios of polynomials in q-' with real coefficients) and stable (all poles strictly inside the unit



disc). We say that C stabilizes P if and only if the three transfer functions C/(I+PC), 1/(1+PC),
and P/(1 + PC) are in S. We now state the following known result.

THEOREM 1

(i) Stabilization

If P E S then C stabilizes P if and only if C = Q(1 - PQ)-' for some Q E S.

(ii) Robustness

If
P = P + A (20)

and if some compensator C stabilizes P, then it also stabilizes P if and only if

A(1 + A )-' E S (21)

where Q = C(1 + PC)-I E S.

The first part of the theorem essentially asserts that if P is stable then the set of all rational
compensators that stabilize P, denoted by S(P), is given by

S(P) = {Q(1 - PQ)-' : Q E S} (22)

Thus, any stabilizing controller must produce a Q which is in S.

The second part of the theorem provides conditions under which the feedback system consisting
of the nominal plant P and the stabilizing control C, which can be thought of as the nominal
closed-loop system, is robustly stable to a dynamical plant pe. turbation A. Observe that in this
part of the theorem, both the nominal plant model 6 and the perturbation A, may be unstable.
However, when A E S, condition (21) reduces to

(1 + AO)-' E S (23)

a sufficient condition for which is that
1

A(ew)I 'A IQie) Vw e [- ,] (24)

Clearly then, a robust control can be designed on the basis of a nominal transfer function model
P(q) and an upper bound on the model error as a function of frequency.

It is convenient to define the set of uncertainty

P(P,b) = {P(q) E S: IP(ew) - P(e)l _. 6(w), Vw E [-r,7]} (25)

Thus, for any function 6(w) > IA(ejw)l, we have P E P(P, 6). Consequently, any control C which
is designed to stabilize P and simultaneously satisfy 6(w) < 1/I5(ei)I, will also stabilize the true
plant P= P+A.

3.2 Modal TDruncation

Assume that the trafisfer function estimate P(q) is an estimate of the first n modes of the LSS.
Typically n is not too large, say n ,z 20, and of course n < t. Hence, P(q) is an estimate of

Po(q) - "(1 - q')Z{ a2 + 2-olks + f12 (26)
k=1* 2fls+k



It is convenient to express P(q) as the rational function

P. () B(q, B.) (27)
A(q, 0.)

where

AC :; A(q,O.) = 1+a*q- ' +...+a;q -2

B(q, 0.) = bq - + + b .q 2 "  (28)
,0 7 = [a ... ;,...b;.

The transfer function coefficients 0. E R 4' are uniquely determined by the modal parameters
#A{f ;, (k : k = 1,... ,n. The converse is not true unless the sampling frequency is large

enough, i.e., if 7r > £Z,/S ,a.

By analogy with the above desription of P.(q), the estimate P(q) can be expressed as

B(q, 0)f w (29)
A(q,)

where e R 4n is an estimate of 0.. Model error is then
A(q) = P.(q) - P(q) + P(q) (30)

where P(q) is the residual mode transfer function given by

P(q)= (1- q')${ s 2 + Q2 (31)
kfn+l s k+ + k

If 0 6., then the n-mode estimate P(q) is close to P.(q), and A(q) %:z P(q). Thus, a
compensator C(q) which stabilizes P(q) will also stabilize the true system Po(q) provided that

I(-)iCP(e'1)l < 1, Vw E [-7r,7r] (32)

To simplify the discussion to follow suppose that the sampling frequency %. is sufficienly large in
the sense that f <n/S2,° 7 r. Otherwise anti- aliasing filters have to be included, which although
they may ultimately be required, the discussion here would be obscured. In effect, we are choosing
an arbitrarily large sampling frequency.

Now, for <w < 7, the control can be designed so that I(e') is as small as required.
For w < DQ/f4,, the residual modes have little effect, i.e., IP(ej-) is small. For frequencies near

some care is required in the control design. However, if the flexible structure is crafted
so that the frequency gap Jtfn+I - P.l is large, then most any controller which has a reasonable
attenuation for frequencies beyond fl,,/f, is likely to be robust with respect to the unmodeled
residual modes. This latter approach is preferable even though the controller can be designed
independently from the structure.

If i is not a good estimate of 0., then parameter error will be a large contributor to model

error magnitude IA(e-)i. In this case, the uncertainty set P(P, JAI) is too coarse of a description,

because the source of uncertainty is parametric rather thaiunmodeled high frequency dynamics.

Thus, any compensator designed to robustly stabilize this set of uncertainty will be unnecessarily
cautious. However, the resulting closed loop system may still satisfy the performance goals. As
will be discussed later, it is possible to design the identification experiment to preclude large

parameter errors.



4 Estimating the Set of Uncertainty

The problem examined in this section is to estimate a set of uncertainty P(P, 6) from the data
record {y(t), u(t) : 1,... , N). We will describe one approach and show under what conditions
the true plant belongs to the estimated set of uncertainty. In this case it follows that any contol
designed to robustly stabilize any plant in the estimated set of uncertainty, will also stabilize the
true plant.

4.1 Parametric Model Estimation

We begin by first constructing a parametric estimate of the transfer function Po(q) using the
prediction error formulation in Ljung(1985,1987). Thus, the parameter estimator is given by

argmlnVN(0,a)BED)

(33)

VN(O, a) = L[L(q)c(t,6)]2

where V is a subset of R P and a E A is a set of auxiliary parameters which characterizes a stable
filter L,,(q), where A is a subset of R ' . The purpose of the auxiliary parameter set will be
desribed in the sequel. The sequence e(t, 0) is referred to as the prediction error and L0 (q)E(t, 6)
as the filtered prediction error. IFxcept for the auxiliary parameters a, the estimator is the usual
least squares estimator.

Following Ljung(1985,1987), the prediction error is obtained from the parametric model set

y(t) = P(q, 6)u(t) + H(q, O)e(t), 6 E V C RP (34)

where e(t) is an unpredictable, but bounded, function. Thus, the prediction error becomes

-(t,6) = H-'(q,)[y(t) - P(q,O)u(t)] (35)

The only resriction on the model set is that the predictor, i.e., the map (y, u) 0--t c, defined
implicitly above, is stable. Thus, we require that the operators H- 1 (q, 6) and H-(q, 6)P(q, 6)
are stable, which defines the elements of the set V. The reason for this restriction is that despite
unknown initial conditions, lim supt. c(t, 6) = e(t), which is obviously the best the predictor
can do considering the unpredictability of e(t).

4.1.1 Least Squares and Linear Regression

The model set we will use here is the equation error model set

A(q, 6)y(t) = B(q, 6)u(t) + e(t) (36)

where A(q, 6) and B(q, 0) are polynomials in q- whose coefficients are the elements of 6, that is,
let

A(q,6) = 1 +alq -  +...+a2. q- 2n

B(q,6) = bq -1 + + b2,-2n (37)

OT = (a,'i 12, 'b2,]



This formulation coincides with (27). Hence,

B(q,6)
P(q,6) - (q,0)

A(q, 0)

(38)

H(q,e) = A(q, 0)

and the predictor becomes
c(t, 0) = A(q,)y(t) - B(q,e)u(t) (39)

which is obviously stable, because A(q, 0) and B(q, 0) are stable for any 0 E R.4 , thus, 7 ) R"'.
The prediction error can also be written as the linear regression

(i, 0) = y(t) - 0T0(t) (40)

where 0(t) E R 4
n is the regressor given by

OT(t) -" [-y(t - 1) ... - -- (t - 2n) u~t - 1)'"..u(t- 2n1)] (41)

In this case, (33) has the well known closed form solution

6a = R;1 ba (42)

where

R. =0(t)

(43) -

bNb. = [L.(q)0(t)][L.(q)y(t) ]
8=1

provided that R-' exists. A sufficient condition is that L0(q)4(t) is persistently exciting and the
length of the data record N is sufficiently large.

DEFINITION

A sequence f(t) E R P is said to be persistently exciting if there is a positive constant Pi and a
positive integer M such that for all r E [0, oo)

mm A f] 1 7+M f(t)f T (t) (

Clearly if L,,(q)O(t) is persistently exciting and N > M, then R.' exists.

4.1.2 Estimating the Nominal Transfer Function

Having found 0o, form the parametric plant transfer function estimate, denoted by &0(q), using
the equation error model, i.e.,

Po(q) = B(q,Ga) (45)
A(q, 8o)

Thus, we obtain the family of parametric models

{PaEq),E A) (46)



Observe that the true plant Po(q) belongs to every member of the family of sets of uncertainty

{P(Po, 1A.1), cr E A} (47)

where the true model error is
A.(q) = P.(q) - Po(q) (48) __

Using the data record {1(t),u(t) t = 1,...,N}, we now seek to find the family of sets of
uncertainty

{P(P,6), qE A) (49)

with the property that 6(w) _> I~a(C3W)l,VW E [-lr,],wc E A4 (50) -

which is sufficient to guaranty that for all a E A we have P E P(/Po, 6a).

4.1.3 Bias in Least Squares Parameter Estimate

The parameter error 9 - ., or bias, is a result of unmodeled dynamics and disturbances. To
compute the bias, observe that (14) can be expressed as

P() =B(q,0.) + (51)

A(q, 0.)

Hence, it follows that (15) can be written as "

(i) 6oT(jt) + e(t, 6.) (52)

where the prediction error is

e(t, 0.) = A(q, 0.)[P(q)u(t) + d(t)] (53)

Substituting this expression into (42) gives the bias as

0o- .=R;11. (54) .

where

a = ~[L(q)0(t)][L(q)(t, 0.)] (55)
1=1

By carefully choosing the data filter L(q) and the input spectrum S.u(w), it is clear that the
bias can be made small. Hence, it is possible to design the identification experiment so that .
P.(q) = B(q, .)/A(q, 6.), and the inherent conservatism in the set of uncertainty P(P.,6o) due
to parameter bias is insignificant. Issues of experiment design will not be pursued here. The
interested reader is referred to Ljung(1987) and the references therein.

4.2 Non-Parametric (Spectral) Estimation

The approach we propose for estimating the model error is to use standard methods of non-
parametric transfer function estimation based on spectral estimation, e.g., Jenkins and Watts(1968),
Ljung( 1985,1987). We will assume that u(t) and d(t) are zero-meaai sequeceb with spectral den-
sities Su(w) and Sdd(w), and cross- spectral density SI.(w). These are all defined analogously
with (17). Assume that the input and disturbance are uncorrelated, i.e.,

Sdj(W) = 0 (56)



This situation arises, for example, when the LSS is operating without a stabilizing feedback, that
is, in open-loop. Recall that the LSS is open- loop stable. ( The proceedure described below can
be modified to account for a stabilizing feedback. A brief discussion appears later in the sequel.)

Using the parametric transfer function estimate P.(q), form th. corresponding output error,Si.e., -

T1. 0 ) = y(t) - P(q)u(t)

(57)
= a(q)ii(t) + d(t)

where
A(q)- Po(q)- P(q) (58)

is the true model error, for which we now seek an estimate based on the data records

{7(t), u():t= 1, .. ,N} (59)

for each a E A.

Using the same notation as above, the cross-spectral density between the output error and
the input is given by

S.t&(w) = ao(ej")SU(W) (60)

The standard non-parametric frequency domain estimate for
A(w) is then

= Si~u(W)(61)

where S,,(w) and S,=(w) are spectral density estimates obtained from the finite data record (59).
There are many specific ways to generate spectral density estimates. Following Ljung(1985,1987)
or Jenkins and Watts(1968) we use the smoothed spectral estimators:

N-i
= E

ffi-N+l

(62)
N-i

-r---N+l

where the correlation estimates are
SN-fiI

=%(T 11.~()U(t + 'rI)

(63)
4..&(T N-fi .

AuuCr) = E u(t)u(t + lrl)
t=--1 . - 4

The function ,(r) is referred to as the lag window of length 7, where typically 4.(r) = 0 whenever
ItI > y. The above spectral estimates can be equivalently expressed as the following frequency
domain convolutions:

(64)

§cu = (w) Vw - I Cdo



iI
where W(w) is the spectral window, defined as the Fourier transform of the lag window, i.e.,

N-I

w.(w) = A,(T)e-j (65)
7= -N+l

and where I,(w) and II(w) are the periodograms given by

47~~(N =j ( aii~) (N ~~.Jt

(66)

N 12
x (to)~ ~ 1 -2x (,)e-J-' r.

By combining the above expressions, the frequency domain estimate of model error can be com-
pactly expressed as

f -. W..1(W - a)I .(a) d'= _' f 1 w,(w - o')I (o) do'67

Observe that as y increases the spectral window becomes more narrow. In addition, the spectral
window is usually characterized by the following properties:

f:,,w(w)dw = 1 f" WW.Y(W)dw = 0
(68)

f:,,w2I4'(w)dw =M(-y) fJr,,WV(w)dw = jLK(y)

where as -y increases, M(-y) decreases and K(-') increases. Under these conditions, it can be
shown (see, e.g., Jenkins and Watts(1968) or Ljung(1985,1987)], that for large N, large -y, and
small K(y)/N :

(W) -- A. (ej)w) 12 :A 2(-y)IR.(W0)I2 + K(1) Sdd(w) (69)
N S.. (w)

where

Ra(w) = a(e) + A aej() (70)

with ' and " denoting differentiation with respect to w, once and twice, respectively. Hence, for
some large N, large -y, and small K('y)/N, the error IAa(w) - A.(di,) can be made arbitrarily
small. This fact justifies the proposed uncertainty modeling scheme for on-line robust control
design. Specifically, let T(P, C) denote the closed-loop system corresponding to the configuration
of Figure ??, let T. denote the set of all acceptable closed-loop transfer matrices, let P denote
the true plant, and for each a E A, let P(P., ba) denote the set of uncertainty defined by

P(P, b.) = {P(q) E S: IP(eiw) - pabe.) 6.(W)1} (71)

We can now state:

THEOREM 2

Suppose that for all a E A there is a function

6a(&,) > I Va(;), Ew 1 -r,r] (72)

If there is an a. E A and a corresponding compensator C..(q), such that

T(P,C..) E T., VP E P(156.,6 0.. ) (73)



then, for some large N, large -y, and small K(y)/N,

T(Po, C..) E T. (74)

Theorem 2 provides conditions under which the true plant is a member of the estimated set
of uncertainty. Hence, any controller which robustly stabilizes the set of uncertainty will also
stabilize the true plant. In this context robust stabilization means that the closed-loop system
T(P, C..) E T. for all P in the set of uncertainty.

The difficulty in applying the theorem is to properly select N, -, and most importantly, the
function 6,(w). A natural choice for the latter is

6.(w) = [1 + kCw)]lA 0 (w)I (75)

where k(w) > 0. Hence, b(w) 2! I&°(ej-I,Va E A if

- ~k(w) (6
<I+k(w,) Vc E A (76)

where

=1 I (M2(7)IR(w)12 + K(7) Sdd(W) 1/2a , ) = (o e, ).W ) (77)

For large y, typical spectral window characteristics behave like

M(7) K(-7) Ko (78)

Hence, for large -y,

.r4 N S..(w) (79)

Observe that if S= (w) is more or less constant for w < /fl and :;tenuates rapidly thereafter,
which is usually the case, then R,(w) z (1/2)A"(w). Thus, for some large 7, 6

0(w) _ IAo(eiw)I,
provided that M o < k(w) a _ Sd(W)i _ 0 1(ml< and- ,= (80) .

27 Vo(e I) 1+ k(w) N s..(w)

4.2.1 Summary of Uncertainty Estimation Procedure

The following steps summarize the above procedure for estimating model uncertainty:

Step 1 Given a preselected filter parameter a E A, form the filtered prediction error, and
then solve for b. from (33).

Step 2 Using the parametric transfer function estimate P(q, b.), form the output error data
record (59), and then calculate the frequency domain model uncertainty estimate &.(w) from
(67), using standard spectral estimation procedures.

Step 3 Design a robust control based on the plant being a member of the estimated set of
uncertainty P(P, kIA.1), as defined in (71) for some function k(Wo) > 0,VW E [-W, lr].

Step 4 If, for some a. E A, there is a feedback compensator C,.(q), such that the closed-loop
systems in the setJT(P, C0.), VP E P(P 0 ., b,.)} satisfy performance objectives, then implement

the compensator. Otherwise, go to Step 5.

Step 5 Select a new value for the filter parameters a E A and go to Step 1. If all filter param-
eter values in A have been exhausted, then implement that compensator in the set {C., a E A)
which produces the best closed-loop performance, i.e., the nearest to the performance objectives.



4.3 Closed-Loop Uncertainty Estimation

Suppose that the LSS system
y(t) = Po(q)u(i) + d(t) (81)

is operating in closed-loop with the stabilizing feedback

u(t) = r(t) - Co(q)y(t) (82)

The least-squares parametric procedure for obtaining P. will still work, but the spectral approach

for obtaining the model error estimate A, needs to be modified. The reasoning is as follows: let

r(t) = 0 and suppose that the spectral estimates Sqou(w) and ) are very close to the true
spectra S,.u(w) and S,6 (w), respectively. We then have

) S,(w) Ao(eJw) (83)

avail(a lj) + [(e( 
(84)

which can be an arbitrarily bad estimate. To correct this difficulty, suppose that r(t), which
is available to the user, is selected so that it is uncorrelated with the disturbance d(t) and its
spectrum is much larger than the disturbance spectrum, i.e., Sd(w) = 0 and S 7,,() > Sdd(w). If
the spectral estimates are close to their true values then

- Aaeiw) S,~(w) Aa~~w)(85)

Sdd(w)(6)

Thus, by careful external input selection (experiment design), it is possible to use the uncertainty
estimation procedure also in closed loop with a nominal stabilizing controller.

5 Example of Uncertainty Estimation

In this section the uncertainty estimation procedure is applied to data obtained from the laser

pointing experiment described in Walker et al.(1984). A schematic drawing of the apparatus is

shown in Figure 4.
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Figure 4: Laser pointing and control experiment

The objective of the experiment is to control the jitter of the laser beam. The single actuator

consists of a pivoted proof-mass which exerts a reaction force on the flexible beam whenever



the proof-mass is moved by an applied control current through the armature. As the flexible
structure vibrates, the laser beam changes its angular direction. A quadrature detector, mounted
on the structural support, registers the laser beam position, as long as it is in the field-of-view
of the detector. The laser beam strikes a mirror on the flexible structure and is reflected by
another mirror mounted on the proof- mass actuator. The resulting beam is split in two by a
beam-splitter, with one ray going to the quadrature detector and the other to a screen where the
jitter is magnified for visual inspection. The mass of the actuator is greator than the mass of the
flexible structure, thereby insuring a significant interaction between the actuator and the flexible
structure.

The problem is to control the jitter from 4 Hz to 20 Hz. The input u(t) is chosen as a sine-
sweep lasting about 16 seconds, sweeping from 4 Hz to 20 Hz and sampled at 51.2 Hz. The
number of data samples is N = 1024.

I I
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Figure 5: (a) DFT(u), (b) DFT(y), (c) ETFE and P0(ej- )  J

Figure 5 shows the discrete-Fourier -transform (DFT) of the input and output, as well the ratio
of output DFT to input DFT, referred to as the emperical transfer function estimate (ETFE),
compared to the "true" transfer function Fo(eJ"). Since the data is taken from a physical device,
the true system dynamics are not really known. What we refer to as the "true" system is an 8th
order equation error model obtained from the data by using the least squares estimate (42) with
n =m =8. This gives

POW = Bo(q, 6)
Ao(q, 0) + 0 167 2 _ 0 6 - . -.) 5 -B(q, 8) = --00449-1+.O1- -. 5-S-O5 -  __

+ .0139 - ' - .011q- 6 - .033q- T - .027q- 8

Ao(q, 0) = 1 - 1.11q -  + .54q - 2 + .47q -3 + .779 - 4

- .179 - 5 + .089- 6 + .40q- T + .0057q- '

4]
U]



The parametric model is chosen as a 4th-order equation error model as in (36), where

A(q,O) = 1+al q-1 +..+a 4q 4

B(q,0) = bq - +. + b4q-

0= -a,.. a, 1 ... , 4

The auxiliary filter parameter set is the 4-tuple,

A = {0,1,-2,31

such that the corresponding filters have the following properties:

Lo(q) = 1, the "natural" filter.

L1 (q) = 8th-order Butterworth with passband [.1r, .677r].

L2(q) = 8th-order Butterworth with passband [.11r, .407r].

L3(q) = 16th-order Butterworth with passband [.157r, .40r].

The effect of each filter is shown, respectively, in Figures 6 to 9. Each figure shows 3 plots:
the two top ones showing gain and phase of the estimated plant (the dashed lines) compared to
the true plant (the solid lines), and the bottem plot comparing magnitudes of the model error
estimate (the dashed line) from (67) with the true model error (the solid line).

The top and bottem plots also show the magnitude of the passband filter used to form the fil-
tered prediction error. Observe that the model error estimates are quite accurate in the frequency
range [.15, .701, which is the same range where the input has a nice flat DFT. The model error
estimates were obtained using a rectangular window, and no attempt was made here to adjust "
the lag window width to achieve a better resolution. The best model estimate is clearly for the
filter L3(q), particularly over the passband of interest.

These results give confidence to the uncertainty model estimation procedure proposed here,
because despite the fact the some of the estimated transfer functions are quite poor, the model
uncertainty estimate is very good. Hence, a robust control designed on the basis of the estimated
set of uncertainty would not de-stabilize the true system. The next step is to continue with the
above example, for example, and it. :orporate a specific robust design control design method.

6 Concluding Remarks

A method for estimating the set of uncertainty of a plant transfer function has been proposed
and analyzed. Theorem 2 provides analytic justification that the true plant can, under suitable
conditions, be guaranteed to be in the estimated set of uncertainty. An example is presented
which supports the theory. One of the restrictions in this paper is that the plant is stable and no
feedback is present during the experiment. The results, however, can be extended to the case of
an unstable plant operating in closed-loop with a stabilizing feedback compensator.

Although in this paper we restrict the auxiliary parameters to essentially index data filters,
the concept can be broadened. For example, the filters can be chosen differently for the input and
output data. In addition, the auxiliary parameters can index various inputs which have different A

spectral content and the choice made by using a local optimization on the auxiliary parameters.
The index parameters are thus choices which can be made to tailor the identification experiment
in accordance with the use of the model. Off- line procedures for experiment design are discussed,
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I
for example, in Ljung(1987) or Goodwin and Payne(1977). The issue addressed here, which might
be called "on-line experiment design", remains to be studied and further developed.

The results of this paper raise some questions, like: why not use non-parametric spectral
estimation to obtain the transfer function estimate in the first place? The answer is partly to be
found in Ljung(1985,1987), where it is shown, as might be expected, that the parametric tech-
niques have a smaller variance (asymptotically) as a function of data length. Here, we are using
the parametric model for the critical frequency range where control is needed, whereas a cruder
spectral analysis is used for the frequency range over which control is not as important. Another
question: why not just increase the model order, and hence, stay with parametric methods? This
approach is taken in Wahlberg(1986), where after identification a model reduction is performed.
The problem is that we now have one plant estimate and no set of uncertainty, i.e., the esti-
mate is assumed to be sufficiently accurate. Hopefully it is, but this can only be established by
an a priori analysis, i.e., there is no on-line estimate of the set of uncertainty. It may be that
such an estimate is unnecessary for a particular problem, provided that the experiment has been

appropriately designed. 4
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Abstract

This papers examines an adaptive control scheme which involves the selection of a
LI fixed controller out of a finite collection, where each controller is robustly designed to

account for the true plant being in a not necessarily small set of uncertainty. There
are no adaptive "parameters" in the conventional sense where adjustments are made to
either model or controller parameters. The parameters here involve pseudo-probabilities or
weights assigned to each of the finite controllers. These quantities are computed recursively
from the measured data. Various adaptive selection mechanisms which depend on these

U pseudo-probabilities will be presented and discussed in the full paper.

. , *

*Senior Scientist, Integrated Systems, Inc., Santa Clara, California, USA and Consulting Professor, Depart-
ment of Electrical Engineering, Stanford University, Stanford, California, USA

tProfessor, Department of Systems Engineering, Australian National University, Canberra, ACT, Australia

1t

I-.



1 Introduction

Our concern is with the adaptive control of plants with both parametric (structured) uncer-
tainty and dynamical (unstructured) uncertainty. The plant is linear, and subject to distur-
bance and measurement noise. Knowing the value of the uncertain parameters allows for the
design of a robust controller to cope with the unstructured uncertainty. Moreover, there is no
robust controller, i.e., one that is linear-time-invariant, that will handle the entire spread of
structured and unstructured uncertainty. Hence, there is the need for an adaptive control.

More precisely, let 'P denote the family of plants given by

'P = {P(z) = P(z, a)[1 + A(z, a)] : a E A, IA((eiw),a)I < 16((eji), a)l,Vw E [-7r,7r]} (1) "

where a is the structured parameter constrained to a subset A of R P, and A(z, a) is the
unstructured uncertainty bounded by the weighting function 6(z, a). Assume that there is a
finite number of parameter "design" values C1, ... , aN, each in A, such that for any a E A, not
necessarily equal to a,,... , aN, there exists a controller Ci(z), tuned to ai for :ome i, which
acheives satisfactory performance in the face of the unstructured uncertainty, and in the face
of the difference between the actual value of a and the design value ai. For example, the i-th
controller Ci(z) in the set C1(z), ... , CN(z), provides robust performance for any plant in the

family

P, = fP(z)EP: Ila - aII < m,} (2)

where P1,,... , PN completely cover the plant set P, that is

N
PC U Pi (3)

Our task in this paper is to explain how, when a is unknown, the controller C,(z) can be
selected to control the plait. This type of adaptive controller is not like the conventional ones
where either model' or controller parameters are directly adjusted. Here the parameters are

contained in the mechanism for switching amongst the preselected robust controllers, which is
essentially a gain scheduling proceedure, but is adaptive in the sense that the schedule is being
learned from the measured data. The gain schedule is usually set in advance, for example,
in a flight control system the gain schedule is a predetermined function of the Mach number

and aerodynamic pressure. One of the interesting possible adavantages of this method is that
although the plant may have a large number of uncertain parameters (a in the above notation),
it is possible that only a few controllers are required, and hence only a few parameters in the
selection mechanism. Also the individual robust controllers can be based on uncertainty in
physical parameters rather than canonical parameters, such as transfer function coefficients,
as used in the conventional parameter estimation techniques, e.g., least squares with a linear
regression model.

The idea of using preselected robust controllers as described above is due to K. Poola [1]
who also proposed a particular smooth adaptive selection algorithm. Here, we examine the
adaptive selection mechanism as discussed in [2] and [3], which will be described in detail in
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the sequel. In [3] this scheme is referred to as a Multiple Model Adaptive Control (MMAC),
but the individual controllers are not necessarily selected to be robust in the manner described
above. Here we also provide an analysis of the convergence properties of the adaptive selection
algorithm following the analysis in [2].

2 Structure of the Adaptive Controller

Figure 1 depicts the general adaptive set-up that we consider. The design of each controller
Ci(z) is not an adaptive control design, but rather, a robust control design task involving
the plant family ?P and the coverings Pi. The signals used to adaptively select the controller
are the innovations sequences, or prediction errors, denoted by 61(t),..., CN(t), where each is
obtained from the Kalman filters denoted KF1,..., KFtN.

Although there are many structures for the individual controllers Ci(z), one structure
which utilizes the prediction errors is shown in Figure 2. In this case Ci(z) consists of an
observer based state feedback controller together with an auxiliary signal obtained by pro-
cessing the observer innovations sequence e,(t) through a stable transfer function Q,(z). An
important aspect regarding the flexibility of this controller structure is that each Ci(z) is
a parametrization, in terms of stable Qi(z), of all stabilizing controllers of the plant model
P(z, a5 ), see, e.g.,[4]. That is, all controllers which stabilize P(z, a,) are obtained by letting
Q,(z), referred to as the Youla parameter, range over all stable transfer functions.

The adaptive selection 'mehanism can be abrupt or smooth, and we will in the full paper
examine in detail both of these choices. First, we review the results in [2] amd then provide
the extension to the feedback case. The adaptation mechanism is the real object of interest in
this paper. We set it up using the ideas of [2] and [3]. In broad outline, the idea is this: Design
predictors (e.g., Kalman filters) which are optimal for each of the plants P(z, a,), i = 1,... , N.
(Their design also requires values to be assigned to noise covariances.) We then process the
innovations, or prediction errors, from each predictor and compute certain quantities, roughly,
the scalar sample covariance. The index value i. E [1,... ,N] whose predictor produces the
smallest sample covariance is selected and the corresponding Ci.(z) controller is used to control
the plant.

3 Review of [2]

Two issues are examined in [2]. First, when the plant is in the model set, and secondly, when
it is not.

3



3.1 Plant in Model Set

Let a plant be drawn from the collection {P(z,ai): i = 1,...,N), say the plant is P(z,aio).
Suppose the plant has disturbances and measurement noise, but no exogenous input. Let N
Kalman filters, each tuned to {P(z, ai) i = 1,... ,N), be connected to the plant. Let the
asymptotic design innovation covariances be £Q, and let e;(t) denote the sequence obtained from
the i-th filter connected to P(z, aio), at the point in the filter where the innovation sequence
would normally be observed. Recall that the quantities ei(t) and Ili are available from the
Kalman filter and covariance equations, respectively. Moreover, the design covariance sl, is
computible in adavance of the measurements. Note also that co(t) is actually an innovation
sequence, but ci(t) for i # io is not in general. Define, for i 0 i,

Li(t)_ -p(a ,z ' )
P(tol')(4)

where z t denotes the sequence of measurements y(l),..., y(t), and p(alz t ) are the a posteriori
probabilities which, assuming gaussian distributions, are sequentially computible from

(I, iz') = P(ai1z t-)Vdet(f') exp{- ef(t)Qt 1 ce(t)}

It follows immediately that

In L,(t) = In L,(t - 1) + [er(t) 71e,.(t) - r(t) .'e,(t)] (6)

2Thus, as t -- oo, and for all i tio,

2_ ln[L,(t)] ...- (Vi - V.) (7)
t

where for all i,

V = In det(f2,) + tr(n2-1 E ) (8)

with

-lim - ,(k)4,(k) (9)
t00 t k-1i

= £{ (t)I(t)} (10)

The expectation operator E(.) is of course taken with respect to the noise processes. By
definition of optimality,

V. < V, Vi io 11

and thus, Vi # io, as t - oo,
p(Ailz t ) -40 (12)
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exponentially fast with asymptotic convergence rate exp{-(V, - V,0)t}. This means that as
t -+ 00,

Acri?) 1, i =6 iop(a,(z t) -. {0, i € o (13)

and hence, the correct plant model is captured. Intuitively this is as expected, because the
plant P(z, ao) is in the model set {P(z, a1) : i N1,..., N}, and moreover, one of the Kalman
filters is optimal.

3.2 Plant Not in Model Set

Next, in [2], the casl is cbzisicered when the plant (and noise covariances) is not in the model
set. Specifically, let the true plant be given by

Po(Z) = P(z, 0 )[1 + A(z, a,)] (14)

for some a, E A, where now none of the Kalman filters is optimal. The question is: if one
acts as if the true plant were in the model set, and the probabilities are computed as before,
then what actually happens?

The answer is that the quantities p(ailzt ) computed from (5), which might now be more
correctly referred to as pseudo-probabilities, behave exactly as before, namely, that as t -+ oo,

0, i -- i.P(ckIzt)~{ ,i#i (15)

where
t. = arg min V (16)ir:[i,...,N)

Hence, the algorithm selects the plant model P(z, ai.) in the model set {P(z, a,) : i
1,..., N} which is closest to the true plant Po(z) in the sense of minimizing 1 over all i. As
shown in [2], this is equvalent to minimizing the Kullback information measure computed on
an asymptotic per sample basis.

We remark also that if 4P,(w) and 'o(W) are the model and plant output spectrum, respec-
tively, then

=(w) W(eJW)fiW7(e - jW) (17)

( = Wo(e)loWr (e-w) (18)

where Wi-(z) and W;1 (z) are the transfer functions from the measurement sequence y(t) to
the model innovations ei(t) and true innovations eo(t), respectively. Note that these transfer
functions can always be selected to be stable and stably invertible. Hence, we can compute

i by 1 f W(eJw)4(w)[W (e-wJ')]T dw (19)

#2 , J! ,



and also
tr(i.' ,) = j tr[@o(w),'(w)] du (20)

Finally, we get
Vi I det(Qj) + i tr[f (w)1 (w)] dw (21)

4 The Effect of Feedback and Exogenous Inputs

We work now to consider the arrangement depicted in Figure 3. Let the plant system be
described by

WO = Po(z)u(t) + W0(z)V0 (t) (22)

where Vo(t) is a zero mean white noise sequence with covariance matrix S1,. The feedback
system is

u(t) = C(z)[r(t) - y(t)] (23)

where r(t) is a stationary zero mean sequence with spectrum C.(w). The controller C(z) may
be one of the avaiable set of controllers Cj(z),..., CN(z). Recall that each controller Cj(z)
is designed to stabilize any plant in the set Pj defined in (2). Observe that if the true plant
Po(z) is not in this set, then the closed loop system may be unstable if Cj(z) is applied.

The block labeled KF denotes a Kalman filter which is designed for the plant model

y(t) = P(z, a,)u(t) + W(z, a,)vi(t) (24)

where v,(t) is a zero mean white noise sequence with covariance matrix Pi. Hence, the inno-
vations sequence ei(t) from KF is given by

,() = W-'(z,'rQ)[y(t) - P(z,ai)u(t)] (25)

The differe.-ice here in relation to [2] is: (i) the inclusion of an external input u(t) to
the plant and the Kalman filter, and (ii) the generation of that input by a combination of
an exogenous input r(t) and a feedback compensator C(z). We now examine how the filter
selection algorithm (5) behaves in two cases, namely, when C(z) stabilizes P(z) and when it
does not.

4.1 Stabilizing Feedback

Suppose that the feedback compensator C(z) stabilizes Po(z). In this case the pseudo-
probabilities p(a, 1zt ) are again computed from (5), but now we take the set of measurements
as z' = {y(k),u(k) : k = 1,... ,t}. The result (15), (16) is the same as before: the algorithm
selects the plant model that is closest in the sense of the information measure, i.e., that plant
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model P(z, a), W(z, ai) which is closest to the true plant Po(z), Wo(z) in the sense of mini-
mizing V in (21). What is different is the formula for V. To compute this first observe that
(we drop the explicitly shown dependence on z, t, and ai to simplify notation)

* = Wi-'(Po - P)U + W.V.] (26)

and under the feedback action

u = C(I + PC)- ' [r - Wovo] (27)

on Note that by saying that C(z) stabilizes Po(z) we mean that the transfer functions C(I +
PoC) - 1 , (I + PoC)-', and Po(I + PoC)-' are all stable. Hence, we get

Ci = HWovo + Gr (28)

where
Hi = W-'(I + PC)(I + PoC)-' (29)

and
G, = Wj1 (Po - P,)C(I + PoC)- (30)

Assuming that r(t) and vo(t) are uncorrelated, then

°,,(w) = Hi(ejw),40 (w)HT(e- jw) + Gj(ejW)4-(w)GT(e - jw) (31)

and hence
U1 , _ ,(w) dw (32)

i-i
To get better insight into this formula, observe what happens when we model the plant input-
output dynamics correctly, that is, when P = P0,. In this case the presence of the external
input has no effect and we get

* =ir (e 12,(e-j1)]2 d, (33)

as before. In the more general case with a stabilizing feedback, the above formula for E, is
effected by errors in both the dynamical model due to Po(z) - P(z, ck,) and in the noise model
via Wo(z) - W(z, a). Signal to noise ratio is also relevant, for example, if >(w) >> %(W),
then the term involving G1(z) tends to dominate, i.e., the noise model error is not as important
as the dynamical model error.

Other insights can also be obtained by using the expressions derived in [5], such as

L = vo+ W (u ) (34)

where
= [P0 - P, W.- wJ (35)

Further interpretations will be provided in the full paper.
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4.2 Unstabilizing Feedback

It could be that the adaptive selection algorithm (5) picks out a control which would stabilize
one of the plant models, but de-stabilizes the true plant. The question arises as to what
happens if the same algorithm is used to drive the adaptive switch. Clearly, the limiting - i
process in (21) will no longer be valid.

It is shown in the full paper that if the dominnent unstable mode of the closed loop system
is at z = C, IC > 1, then the selection algorithm identifies that plant P(z, aj) for which
P(C, a,) is "most like" P.((). If P((, ac) = Po((), then the controller C1(z) appropriate for I
P(z, aj), when connected to Po(z), will not produce an unstable mode at C. Nor will it do so
if P(C, a,) ; P(() , because the controller is robustly designed to stabilize all plants in the
set Pi defined in (2). However, there is no a priori guaranty that it will give no other unstable
mode C+ 0 C. So despite the fact that there is a systematic way of switching out an unstable
controller, there is no guaranty that instability can be instantaneously repaired. One could
randomly select any alternative control from the set Ci(z),... ,CN(z), or better, whenever
instability is deemed to occur, say whenever Ijy(t)I exceeds some threshhold, a stabilizing,
but low authority controller, can be switched in until the adaptive system selects a new plant/
controller.

5 Algorithm Modifications

The pseudo-probability algorithm (5) can be modified in a number of ways. The influence of
past data, which tends to make the algorithm sluggish, can be reduced by discarding old data.
For example, suppose that the controller selection is to be based on the smallest

- Vi(t) = lndet(Qli) + i X t-k, CT(k)Q7e1(k) (36)
k=1

where A E (0, 1] is the usual "forgetting factor" which exponentially discards old data. Let pi(t)
denote the pseudo-probability associated with V,(t) above. The algorithm (5) now becomes

pi(t) = [pi(t - 1)] det() exp-1eT(t) 1 e(t)}7)

Following the derivations in [2], we now get

n L1 (t) = AIn L,(t - 1) + [ET (t))'e.(t) - eT(t)S- ' E,(t)] (38)

where
i. = arg min V(t) 

(39)

a n d fo r i i. , L ( ) P (t) (4 0 )

p,.(t)
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As in the previous cases, it can be shown that as t 00,

{1, i i. (41)1it) - 0, i 96i.

exponentially fast.

Other variants will be explored in the full paper.

6 Adaptive Selection

In the full paper we will provide a detailed analysis when the the control is given by

N
u(t) = E-l(t)ui(t) (42)

i=1

with
u(t) = C,(z)[r(t) - y(t)], i =- I,, ,N (43)

where 61(t),... ,ON(t) are selection coefficients, or weights, which are determined from the
pseudo- probabilities pi (t), ... , pN(t). We will examine two types of adaptive selection mecha-
nisms, namely (i) abrupt selection, and (ii) smooth selection. In either case it may be necessary
to also provide for a back-up controller

uo(t) = Co(z)[r(t) - jy(t)] (44)

which is of low-authority,, but stabilizes all plants in P. This control can be switched in
whenever an "instability" is deemed to occur.

6.1 Abrupt Adaptation

In this case we adjust the weights /3(t) abruptly. For example:
1, Pi(t -1) < Pth_5Pi(t) (45)

= t)= 0, otherwise (4)

where Pth E (0,1) is some threshhold value, probably close to one. Hence , the current control
is held until one of the pseudo-probabilities is sufficiently large, and then a new control is
switched on in its place.

6.2 Smooth Adaptation

To avoid unpleasentries associated with abrupt switching one can swithch smoothly. The most
obvious choice is simply to set

fl(t) = pi(t) (46)

9
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Adaptive Control
via

Finite Modeling and Robust Control

Robert L. Kosut*and Brian D.O. Andersont

Abstract: This papers examines an adaptive con- i, which acheives satisfactory performance in the face
trol scheme which involves the selection of a fixed of the unstructured uncertainty, and in the face of the
controller out of a finite collection, where each con- difference between the actual value of a and the de-
troller is robustly designed to account for the true sign value ai. For example, the i-th controller Ci(-)
plant being in a not necessarily small set of uncer- in the set Ci(z),...,CN(z), provides robust perfor-
tainty. There are no adaptive "parameters" in the mance for any plant in the family
conventional sense where adjustments are made to ei-
ther model or controller parameters. The parameters P = {P(z) E P :a - ai1 _ m,} (2)
here involve pseudo-probabilities or weights assigned where P,...,PN completely cover the plant set P,
to each of the finite controllers. These quantities are that is
computed recursively from the measured data. N

PCUP, (3)
i=1

1 Introduction Our task in this paper is to explain how, when a
is unknown or slowly varying, the controller Ci(:)

Our concern is with the adaptive control of plants can be selected to control the plant. This type of
with both parametric (structured) uncertainty and adaptive controller is not like the conventional ones
dynamical (unstructured) uncertainty. The plant is where either model or controller parameters are di-
linear, and subject to disturbance and measurement rectly adjusted. Here th6 parameters are contained
noise. Knowing the value of the uncertain param- in the mechanism for switching amongst the prese-
eters allows for the design of a robust controller to lected robust controllers, which is essentially a gain
cope with the unstructured uncertainty. Moreover, scheduling proceedure, but is adaptive in the sense
there is no robust controller, i.e., one that is linear- that the schedule is being learned from the measured
time-invariant, that will handle the entire spread data. The gain schedule is usually set in advance, for
of structured and unstructured uncertainty. Hence, example,' in a hight control system the gain schedule
there is the need for an adaptive control. is a predetermined function of the Mach number and

aerodynarnie pressure. One of the interesting possi-
More precisely, let P denote the family of plants ble advaptages of this method is that although the

given by plant may have a large number of uncertain param-
eters (a in the above notation), it is possible that

P = {P(z) = P(z, a)[1 + (:, a)] :a E A, only a few cortrollers are required, and hence only a
IA( ,a) < I6(e1  a),V E [ ]} few parameter' in the selection mechanism. Also the

(1) individual robust controllers can be based on uncer-
tainty in physica! parameters rather than canonical

where a is the structured parameter constrained to a parameters, such as transfer function coefficients, as
subset A of RP, and A(z, a) is the unstructured un- used in the conventional parameter estimation tech-
certainty bounded by the weighting function 6(-, a). niques, e.g., least squares with a linear regression
Assume that there is a finite number of parameter model.
"design" values al,. .. , aNy, each in A, such that The idea of using preselected robust controllers
for any or E A, not necessarily equal to al... a, as described above is due to K. Poola [1], who also
there exists a controller C,(z), tuned to ao for some proposed a particular smooth adaptive selection al-

*Senior Scientist, Integrated Systents, Inc.. Santa Clara, gorithm. Here, we examine the adaptive selection
California, USA and Consulting Professor, Department of mechanism as discussed in [2] and (3], which will be
Electrical Engineering, Stanford University, Stanford, Califor- described in detail in the sequel. In [3] this scheme
nia, USA

tProfessor, Department of Systems Engineering, Aus- is referred to as a Multiple Model Adaptive Con-
tralian National University, Canberra, ACT, Australia trol (MMAC), but the individual controllers are not
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necessarily selected to be robust in the manner de- 3.1 Plant in Model Set
scribed above. Here we also provide an analysis of
the convergence properties of the adaptive selection Let a plant be drawn from the collection {P(z, a,)
algorithm following the analysis in [2]. i = 1,..., N}, say the plant is P(z, ai.). Suppose

the plant has disturbances and measurement noise,
but no exogenous input. Let N Kalman filters, each
tuned to {P(z,cai) : i = 1,...,N}, be connected

2 Structure of the Adaptive to the plant. Let the asymptotic design innovation
covariances be fni and let ei(t) denote the sequence

Controller obtained from the i-th filter connected to P(z,ai.),
at the point in the filter where the innovation se-

Figure 1 depicts the general adaptive set-up that we quence would normally be observed. Recall that the
consider. The design of each controller Ci(z) is not quantities ei (t) and Ili are available from the Kalman
an adaptive control design, but rather, a robust con- filter and covariance equations, respectively. More-
trol design task involving the plant family P and over, the design covariance Qi is computible in ada-
the coverings Pi. The signals used to adaptively se- vance of the measurements. Note also that ci.(t) is
lect the controller are the innovations sequences, or actually an innovation sequence, but ci(t) for i 5 io
prediction errors, denoted by cI(t), .. . , e v(t), where is not in general. Define, for i 4 io,
each is obtained from the Kalman filters denoted prilz')
KF1,...,KFN. Li(t) = cti.z()P(ai*jz')(4

Although there are many structures for the in- where z' denotes the sequence of measurements
dividual controllers Ci(z), one structure which uti- , z t denotes the a oserementslizes the prediction errors is shown in Figure 2. In y(1), . .. ,y(t), and p(alzt ) are the a posteriori prob-

abilities which, assuming gaussian distributions, are
this case Ci(z) consists of an observer based state sequentially computible from
feedback controller together with an auxiliary sig-
nal obtained by processing the observer innovations p(az,) p(dz'-I)V/ , )Edt)
sequence ci(t) through a stable transfer function N
Qi(z). An important aspect regarding the flexibil-
ity of this controller structure is that each Ci(z) is E,() = exp{-!e, (t)f-'tc.(t)} (5)
a parametrization, in terms of stable Qi(z), of all 2

stabilizing controllers of the plant model P(z, oti), It follows immediately that
see, e.g.,[4]. That is, all controllers which stabilize lnL(t) = lnL(t-1)
P(z, ai) are obtained by letting Qi(:), referred to as
the Youla parameter, range over all stable transfer +![c(t)f- -1,(t) ]
functions. 2

The results in [2] are first reviewd. We then pro- +t In det(fli.)
vide the extension to the feedback case. The adapta-det(fl)

tion mechanism is the real object of interest in this Thus, as t -- oo, and for all i A i.,
paper. We set it up using the ideas of [2] and [3]. 2
In broad outline, the idea is this: Design predictors ln[L.(t)] - -(V. - V.,) (7)
(e.g., Kalman filters) which are optimal for each of
the plants P(z, ai), i = 1,..., N. (Their design also where for all i,
requires values to be assigned to noise covariances.) Vi = In det(O) + tr(l7" 'Ei) (8)
We then process the innovations, or prediction errors,
from each predictor and compute certain quantities, with
roughly, the scalar sample covariance. The index 1
value i. E [,..., N] whose predictor produces the Ei lim - Z i(k)JT(k) (9)
smallest sample covariance is selct.d and the cor- 0 = I

responding Ci.(Z) controller is used to control the = £{,(t)T(t)J (10)
plant. The expectation operator C(.) is of course taken with

respect to the noise processes. By definition of opti-
mality,

3 Review of [2] Vi < ,Vi 4i (11)

and thus, Vi i- i., as t --- oo,

Two issues are examined in [2]. First, when the plant p(ailz) 0 (12)
is in the model set, and secondly, when it is not. p(aci.z) 0
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exponentially fast with asymptotic convergence rate and also
exp{-(Vi - V.)tl. This means that as t 0 0,

tr(- = tr[o(w)-(w)] dw (20)

P(ori ,i i(13)
' 0, i 9 i0  Finally, we get

and hence, the correct plant model is captured. Intu- 1 i
itively this is as expected, because the plant P(z, cr,.) Vi = In det(Qi) + , _ tr[$0 (w)4.7'(w)] dw (21)
is in the model set {P(:, ai) : i = 1..., N}, and
moreover, one of the Kalman filters is optimal.

4 The Effect of Feedback and
3.2 Plant Not in Model Set Exogenous Inputs

Next, in [2], the case is considered when the plant We work now to consider the arrangement depicted
(and noise covariances) is not in the model set. in Figure 3. Let the plant system be described by
Specifically, let the true plant be given by

S(z) =P+ A( (i4) y(t) = Po(z)u(t) + Wo(z)vo(t) (22)

where V,(t) is a zero mean white noise sequence with
for some a° E A, where now none of the Kalman covariance matrix fQ.. The feedback system is
filters is optimal. The question is: if one acts as if
the true plant were in the model set, and the prob- u(t) = C(z)[r(t) - y(t/] (23)
abilities are computed as before, then what actually where r(t) is a stationary zero mean sequence withhappens? weert sasainr eoma eunewt

spectrum Zr(w). The controller C(z) may be one
The answer is that the quantities p(ailzl) com- of the available set of controllers Cr(z),... ,CN().

puted from (5), which might now be more correctly Recall that each controller Cj(z) is designed to sta-
referred to as pseudo-probabilities, behave exactly as bilize any plant in the set ?j defined in (2). Observe
before, namely, that as t - oo, that if the true plant Po(z) is not in this set, then

the closed loop system may be unstable if C(z) is

1, i (15) applied.

The block labeled KFi denotes a Kalman filter
where which is designed for th plant model

i. = arg min Vi (16).am.. 16N Y(t) = P(za 1 )u(t) + W(zai)vi (t) (24)

Hence, the algorithm selects the plant model where vi(t) is a zero'rne fi Ahite noise sequence with
P(z,cai.) in the model set {P(z, a) : i = 1 N... N} covariance matrix Pi. Hence, the innovations se-
which is closest to the true plant Po(Z) in the sense
of minimizing V over all i. As shown in [2], this quence cjQ) from KFi is given by

is equvalent to minimizing the Kullback information e.(t) = W-l(z; 1 )fyQ-- P(z, ai)u(t)] (25)
measure computed on an asymptotic per sample ba-
sis. The differencehere. in'relation to [2] is: (i) the in-

We remark also that if Di(w) and o(.) are the clusion of an external inpht u(t) to the plant and the
model and plant output spectrum, respectively, then Kalman filter, and (ii) the generation of that input

by a combination of an exogenous input r(t) and a
= W(e-)!, lVr(e-J-)  (17) feedback compensator C(z). We now examine how

$o(w) = ro(eJw)Q1VT' (e-)-) (18) the filter selection algorithm (5) behaves in two cases,
namely, when C(z) stabilizes Po(z) and when it does

where WP-7(z) and Wo"'(z) are the transfer functions not.
from the measurement sequence y(t) to the model
innovations ci(t) and true innovations 6,(t), respec-
tively. Note that these transfer functions can always 4.1 Stabilizing Feedback
be selected to be stable and stably invertible. Hence,
we can compute Ei by Suppose that the feedback compensator C(z) sta-

bilizes Po(z). In this case the pseudo-probabilities
i VjVl(ejw)-%(w)[lVl(e-j )]T dw p(ail. t ) are again computed from (5), but now we

2 = ,r take the set of measurements as zt = {y(k), u(k) :
(19) k = 1,...,t}. The result (15), (16) is the same as
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before: the algorithm selects the plant model that is 4.2 Unstabilizing Feedback
closest in the sense of the information measure, i.e.,
that plant model P(z, a,), W(z, a,) which is closest It could be that the adaptive selection algorithm (5)
to the true plant Po(z), Wo(z) in the sense of mini- picks out a control which would stabilize one of the
mizing Vi in (21). What is different is the formula plant models, but de-stabilizes the true plant. The
for Vi. To compute this first observe that (we drop question arises as to what happens if the same algo-
the explicitly shown dependence on z, t, and ci to rithm is used to drive the adaptive switch. Clearly,
simplify notation) the limiting process in (21) will no longer be valid.

i W'[(Po - P)u + W V] (26) Roughly what happens is this: if the dominant
unstable mode of the closed loop system is at z =

and under the feedback action C, I(! > 1, then the selection algorithm identifies
u = (I +POC)-[r - Woio] (27) that plant P(z, a,) for which P((, ai) is "most like"

Po((). If P(C, a1 ) = P(C), then the controller C,(z)

Note that by saying that C(z) stabilizes P,(:) we appropriate for P(z,ca), when connected to P,(:),
mean that the transfer functions C(I+PC)-', (1+ will not produce an unstable mode at C. Nor will
P.C)-i, and P.(I + PoC)-' are all stable. Hence, it do so if P((,ac) t P,((), because the controller
we get is robustly designed to stabilize all plants in the set

S= H, Woo ± G~I* (28) P defined in (2). However, there is no a priori guar-anty that it will give no other unstable mode (+ 0 $.
where So despite the fact that there is a systematic way of

Hi = Wj'(I + PiC)(I + PoC)-' (29) switching out an unstable controller, there is no guar-

anty that instability can be instantaneously repaired.

and One could randomly select any alternative control
Gi = Wj'(P. - Pi)C(I + P.C)-  (30) from the set Cs(z),..., CN(Z), or better, whenever

instability is deemed to occur, say whenever I[y(t)I
Assuming that r-(t) and vo(t) are uncorrelated, then exceeds some threshhold, a stabilizing, but low au-

)= Hi(eJw)Io(w)HY(e-JJ) thority controller, can be switched in until the adap-
-+-Gi(ew)¢(w)GT(e - ) (31) tive system selects a new plant/ controller.

and hence

= (w) (32) 5 Algorithm Modifications

To get better insight into this formula, observe what The pseudo-probability algorithm (5) can be modi-

happens when we model the plant input-output dy- fled in a number of ways. The influence of past data,

namics correctly, that is, when P, = P. In this case which tends to make the algorithm sluggish, can be

the presence of the external input has no effect and reduced by discarding old data. For example, sup-

we get pose that the controller selection is to be based on
the smallest

1, = hvW['(e)o(w)[Wi:-(e-'w)rdw 1 tk T
2(33) Vj(t) = lndet(Q)+ j- At- -1T(k)St' c(k)

as before. In the more general caue A:!h a stabiliz- k(36)
ing feedback, the above formula fr , f:rected by where A E (0, 1] is the usual "forgetting factor" which
errors in both the dynamical mo-.' .'- to Po(z) - exponentially discards old data. Let pi(t) denote the
P(z, ai) and in the noise model v,.: -(:,a ). pseudo-probability associated with V(t) above. The
Signal to noise ratio is also rel-' .. f r -xample, algorithm (5) now becomes
if 0r(w) >> 4%(w), then the t,::: .... I. : G,(z)
tends to dom inate, i.e., the noi-;, .. -.:: r is not [p,(t - 1)(3)E(t)
as important as the dynamical t:: .: p,() (37)

Other insights can also be o t;ai. .1-.. u ing the

expressions derived in [5], such m Define,
U i. =arg min V(t) (3S)

and for i 5 i.,

where _p,.(i)Tr= [P. - Pi W - W,] (35) L1(t) p.(t) (39)



As in the previous cases, it can be shown that as
t -- * 00,

1,(t) ={i. (40)

exponentially fast.

6 Concluding Remarks

We have revisited some earlier work on multiple R

model adaptive control and have introduced some of
the ideas of robust control into the procedure. The
controller parametrization in Figure 2 leads one to
hope that a more robust multiple miodel controller
has the form

U(t) = Zpi(t) {Q,(z>*t)1 (41) ____________________

Compare this to the "natural" choice given by Figure 1: Adaptive Control Structure

N
t&(t) = EpQt) {C1 (z)[r(t) - y(t)]} (42)

Apparently a periodic controller switching mecha-
nism can lead to the above "robust" form, e.g., [1],
but this is not verified for the simpler switching
mechanism considered here. In an~y event, it may
be necessary to also provide for a back-up controller

UO(t) = Co(z)[,.(t) - A1(43) IJ

which is of low-authority, but stabilizes all plants in
P. This control can be switched in whenever an "in-
stability" is deemed to occur.

Figure 2: i-th-Controlht* Siucture

References

[1] K. Poola, Personal conimunica:.,an and unsclied-
uled presentation at the MITNS, J u~i. 1):7, Phoenix, nk) ~
AZ.

(2] B.D.O. Anderson and J.B. M-. r . Oplonial Fil-
tering, Prentice-Hall, Englewvood (i~NJ, 1979.

[3] M. Athans, D. Castanon, 1K-P Llt.i, S G;reene,
W.ll. Lee, N.R. Sandell, Jr,, -t. ! Wilsky,
"The stochastic control of tile F-( ' i. . *t using a
multiple- model-adaptive- control (NIN\lAC.) ni..thod-
Part 1: equilibriumi flight", IEEE Fr i,is on Aut.
Contr., vol AC-22, no 5, Oct. 197-7, 1-p 76-7O Figure 3: Fixed Feedback and Multiple Filters
[4] Al. Vidyasagar, Control System Synathesis: A Fac-
torization Approach, MIT Press, Cambridge, MA,
1983.

[5] L. Ljung, System Identification: Theory for the
User, Prentice-Hall, Englewood Cliffs, NJ, 1987.

4)



Figure 1: Adaptive Control Structure

Figure 2: i-th Controller Stucture

12



IA

Figure 3: Fixed Feedback and Multiple Filters

13



On The Use of The Method of Averaging
II For The Stability Analysis of

Adaptive Linear Control Systems

Robert L. Kosutt

Abstract - The uses and limitations of the method of av- Uses and Limitations
eraging are discussed with application to linear parameter The method of averaging provides a great deal of insight

adaptive systems. The method of averaging has shown to into the behavior of adaptive systems. The analysis pro-
provide a means to explicitly determine some of the im- vides quantitative tests for determining local stability and

portant aspects of adaptive system performance, but there instability, rate of convergence, and robustness to unmod-

are inherent limitations, e.g., slow adaptation and param- eled effects. But, it is not a panacea, as there are inherent
eters restricted to trajectories within the constant param- estricts it is n t f place , the peedeof

eter stability set. Remedies to alleviate these restrictions restrictions in the analysis. In the first place, the speed of

are discussed, based primarily on the use of a fized point adaptation required to satisfy the heoretical conditions is

analysis.most often far below that as determined from simulations.
Secondly, the results are valid only when the parameters

I. INTRODUCTION are restricted to a subset of the constant parameter stabil-
ity set. Projection techniques can be employed to restrict

Although uncertainty underlies the reason for using an the parameters as required, but in many practical cases
adaptive control system, too much of the wrong kind ofun- this is not feasible nor even necessary, e.g., in output error
certainty may be cause for grief. For example, simulations system identification and adaptive control, momentary un-
of some simple adaptive control systems, under apparently stable parameter settings can induce very rapid learning,
minor non-ideal conditions, have shown degraded perfor- e.g., Anderson (1985). However, the exact mechanism is
mance and even instabilities, e.g., Rohrs et al.(1981, 1982). not well understood. Also, slow adaptation, if it is used,
In this paper we examine the uses and limitations of the can be counter-productive in some instances because per-
method of averaging for the stability analysis of adaptive formance can be below par for the long period of time it
linear control systems. takes for the parameters to adjust.

A mathematical treatment of averaging can be found in Transient Analysis
S {Chapter 5 of Hale (1969) or in Chapter 4 of Guckenheimer

and Holmes (1983). Applications to adaptive systems can To remove these restrictions requires understanding the

be found, to name a few sources, in: Ljung and Soderstrom transient behavior of adaptive systems. Some preliminary

(1983), where stochastic averaging methods are employed results are reported in Kosut et al.(1987) r,'1 Kosut and

to study the asymptotic parameter trajectories of recursive Bitmead (1986). The tools for analysis involve a combi-

parameter estimation algorithms in system identification nation of small gain theory, passivity, and the method of

methods; Astrom (1983, 1984) showing how the method averaging, with these all linked together by the Contrac-

of averaging explains instabilities and drift; Reidle and tion Mapping Principal. Some of these ideas will be briefly

Kokotovic (1985) study averaging for the linearized adap- described in this paper.

tive system and establish a sharp stability-instability fre- Beyond Hand Calculations
quency domain test; Kosut, Anderson, and Mareels (1987)
on the relation between averaging and persistent excita- Although each of these tools, in principal, involves

tion; Bodson et al.(1986) on nonlinear averaging analysis straightforward calculations, even simple examples can
and determining the rate of convergence; Riedle and Koko- just barely be worked out by hand. It is clear that the

tovic (1986) on the slow integral manifold analysis; and level of complexity of a realistic adaptive system is well

the monograph by Anderson et al.(1986), which uses the beyond hand calculation. Hence, in order for any of the

method of averaging and a total stability approach. above mentioned analytic methods to be of practical bene-
fit, it is imperitve to develop "user-friendly" software tools
which provide the requisite nonlinear analysis.

.Dr. Kosut is a Senior Research Scientiat at Integrated Systcms,
Inc., 2500 Mission CoUege Blvd., Santa Clara, CA 95054, and is At the present time, aside from simulation capability,
a Consulting Professor in the Dept. of Electrical Engineering at there are no available software tools for dealing principally
Stanford University with adaptive systems. "this is a research issue in both

tResearch supported by AFOSR, Directorate of Aerospace Sci- mathematics and cmpution, and it is one that is essen-
ences, under Contract F49620-5-C-0094. ma
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tions. Thus, the parameter adaptive system of Figure 1 is
an adaptive linear control system, which can be described
by the coupled set of ordinary differential equations

w Op1 = A(O)z + B(O)w(t)
9 Plant= q= =(1) - |

where.9(t) E RP is the adaptive parameter, and z(t) E Rn
is the system state, consisting of plant, controller, filters,

Parameter and possibly, reference model states. The matrix functions
Adaptive A(O), B(O) are determined by the design rule 0 i-* p and the

parametric controller structure. The nonlinear function I g
-.. e q(t, z, 0) and the adaptation gain, -y, a positive constant,

Control 'are determined by the choice of algorithm.

Design Constructing the Parameter Adaptive Algorithm

We will restrict our discussion here to the gradient al-
Contr I - gorithm (2)

where 0b(t) E P is referred to as the regessor, and C(t) E
R as the adaptation error. In an indirect adaptive control,

Figure 1: Parameter adaptive control system a typical error is the equation error

= y(3)

tial to a continuing study of adaptive systems. This point with control
will not be pursued here, but it is sometimes an overlooked
research issue, and thus warrents more than a passing re- = (4)
mark. and design rule

II. LINEAR ADAPTIVE SYSTEMS P K(O) (5)

Adaptive System Structure where the elements of 0(t) E R", consist of filtered ver-sions of (y', u), and the elements of 0t(t) E R n' consist

Figure 1 depicts a parameter adaptive control system of filtered versions of (y, u,r), where r(t) is the reference
where u(t) and y(t) are the vectors of measured inputs command. In a direct adaptive control system we can take
and outputs, w(t) is a vector of exogenous inputs, i.e., ref- the error as
erences, disturbances, and noise sources, and the vector = - / (6)
of adaptive parameters is O(t) with initial value 0. The
adaptive parameter vector is mapped into a "control" pa- with control
rameter vector p(t) by some design rule, typically an im- = -oT (7)
plicitly defined memoryless nonlinear function. For exam- where ym(t) is the reference model output.
pIe, in control system synthesis, one can use any number
of model (parameter) based methods, see e.g., Safonov et Goal of Adaptation
al. (1981) on LQG based designs or Vidyasaar (1985) on In general, adaptive algorithms share the same genesis
the stable factorization approach. In system identification, and purpose no matter how they are constructed. Namely,
on the other hand, we normally have a the simple design to adjust 0(t) so that it asymptotically approaches a mem-
rule 0 = p. A more extensive display of how the vari- ber of the set
ous standard adaptive identification and control systems
fit into the structure of Figure 1 is provided in Anderson Jt = {8 E R"' : avge 2 ) is a minimum) (8)
et al.(1986).

In order to illustrate the basic ideas, we will assume where avg{.} is defined by

here that the parameter adaptive algorithm is contiuously 1 T
adjusted. In practice, parameter adjustments would be avg{X} = limra X(t) dt (9)
either at discrete times or the control signal is the output T-oT 0

of a digital computer. In the ideal case, the parametrization can be selected so as

We will also assume that for fixed values of the con- to acheive what is called perfect matching, e.g., the set XW,
trol parameter vector p, the plant and controller are both has a single member such that r(t) = 0 or is white noise.
linear-time-invariant with rational proper transfer func- Under more realistic conditions, the best that can happen

2



is that 9(t) asymptotically approaches a small neighbor- Theorem 1 Suppose that f(t, x) is almost periodic in

hood of t and twice differentiable in z, for all x in a bounded set.
Xr. = {0 E W"' : avg{bc} = 0, avg{O T } > 0) (10) Under these conditions:

r constructed to be iden- (q If z(t) and x.(t) are solutions of (If) and (13), re-

If for fixed ", the regressor 0(t) is spectively, then I1x(O) - z.(O)ll = 0(y) implies that --

tical with, or proportional to, -Oc(t)/0O, then 7. is the f~z(t) - z,(t)I = 0(7), Vt E [0,0(I/y)].

set of all local minima of avg{). Since 8c(t)/80 is a

function of the true, but unknown plant, the regessor can (ii) Suppose there exists x* satisfying

at best be constructed as an approximation. Constructing

the adaptive algorithm in this fashion has been referred avg{f(., Z) = 0 (14)

to as the "MIT-Rule", see, e.g., Whitaker (1959) and Ma-
reels et a1.(1986). Th~en, for all small y > 0, there exists a unique solu- i

reel et l.(186).tion x,,(t ) of (12,) with the following properties:

From a practical point of view it is acceptable that the

parameters approach and remain in a small neighborhood (ii-a) As -' --+ 0, zx,(t) -. x

of Y., provided that members of this set also produce ac- (ii-b) z,(t) is uniformly asymptotically stable (u.a.s.)

ceptable performance. if

The Tuned System maxReA)[B(z*)] < 0 (15)

Assuming this is so, let 6. E R", denote such a setting,
of which there could be many. We refer to each 0. as a (i:-c) Z1 (t) is unstable if

tuned parameter and to the corresponding system max Re Ai[B(zx)] > 0 (16)

i. = A(O.)x + BEO.)w(t) (11) 
_

as the tuned system [see, e.g., Kosut and Friedlander where x - B(z) is the matrix function - ,

(1985)]. Clearly, the tuned system is the same as sys-

tem (1) but with 0(t) fixed at 0.. We can now pose the B(z) = -avg{f(.,z)} (17)

following questions regarding the adaptive system (1):

In order to apply the above result to the adaptive sys-
(1) How do the tuned parameters depend on the exoge- tem (I) it is first neccesary to make a transformation of

nous inputs? variables, so that the resulting system has the appropriate

(2) Is the adaptive system stable in a neighborhood of form as expressed by (12). The transformation is referred

the tuned system, i.e., are solutions (z, 0) stable near to as a time-scale decomposition.

(x. (t), 6.)? Furthermore, how small is this neighbor- Time-Scale Decomposition
hood? From the previous discussions about the origins of the

(3) What is the region of attraction in (x, 0) to a small adaptive algorithm, we are clearly interested in the be-

neighborhood of (z.(t), 0.)? havior of the adaptive system in the neighborhood of the
tuned system. But the tuned constant parameter setting

(4) What is the rate of convergence to this small neigh- 0. is not known before hand. Hence, following the procee-

borhood of (z.(t), 6.)? dures given in Anderson et al.(1986), we study the behav-

ior of (1) in the neighborhood of all constant parameter
Some of these questions can be answered by the method solutions. For this purpose, let ;(t, 8) denote the state x(t)

of averaging, when -y = 0. We refer to 2(t,0) as the frozen parameter

ANALYSIS system state, or frozen state for short. Hence, for each
111. AVERAGING AN LSI E R"', i(t, 6) satisfies the partial differential equation

The method of averaging applies to a differential equa- Ep

tion of the form Of/8t = A(O)f + B(O)w(t) (18)

= 7 f(t, z) (12)

where -r is a positive constant. If - is sufficiently small, By introducing the error state

then intuitively, the stability of the time-varying system X(t) = at) - f(t, 8(t)) (19)

(12) is inherited from the stability of the simpler au-

tonomous averaged system the (x, 0)-system of (J) can be transformed into the equiv-

i = yavgff(-, )) (13) alent (q, 0)-system: A

More precisely, following Hale (1969) or Guckenheimer and t = -f(t, 8, 17)

Holmes (1983), we have: = A(O)1 - -g(t, 6, '/) (20)

3



where the functions f and g are given by where 0 ,- R(6) is the matrix function

f(t,O,q) = q(*(tO)+') R(9) =_avg{f(.,,0)) (26)

g(t,O, ) = [89(t,9)18911(19,7) (21) U9

The transformation of (1) into (20) is referred to as a he sharp stability-instability boundary expressed by

time-scale decomposition, because for small 7, 0(t) changes (24) and (25) allows not only for an assessment of a partic-

much more slowly than 7(t). The averaged system which ular design, but also indicates how to modify and improve

describes the parameter trajectories for small -t is then the algorithm. This is easier to illustate by using a specific
application. Consider the direct adaptive control system

= 'yavg{f(., 0, 0)} (22) (2),(6)-(7). The matrix R(9.) required in Theorem 2 is
then

Using Theorem 1, the stability analysis of the adaptive R(8.) = avg{1.(H,,0.)T + c. (H#.,.) T) (27)
system can be divided into answering questions about its
asymptotic and transient characteristics, such as: where, referring to Figure 1, H 1, and H# are the closed-

loop transfer functions with 0(t) = 8., from an exogenous

(1) Asymptotic analysis: What are the stability proper- input w(t) inserted at the control input to the adaptation

ties of (20) in the neighborhood of (8, r) = (8., 0)? error c and the regressor 0, respectively. Also, c.(t) is the
tuned error, which in the ideal case would be white noise

(2) Transient anialysis: What is the rate of convergence independent of (H#,.4)(t), and hence, the second term
and region of attraction of (20) to a small neighbor- above is zero. In general, c.(t) is small, and so the second
hood of (0.,0)? term can be neglected.

Suppose that 0.(t) is almost periodic with Fourier series

Asymptotic Analysis representation

The definition of the tuned system (x,9.) as well as (28
the stability of the adaptive system in the neighborhood we(t) - E e(w)- (28)
of the tuned system can be answered by Theorem 4.2 in k'n

Anderson et al.(1986) or Section 3 in Bodson et al.(1985). where f0 is the set of distinct Fourier frequencies and o(w)
The flavor of these results, which follows from Theorem 1, the corresponding coefficients. Then, with c.(t) small,
can be stated as follows:

Theorem 2 Suppose that the right hand sides in (1) are
almost periodic in t and twice differentiable in both z and wen

9, for all x and 0 in bounded sets. Under these conditions: o(w) = a(w)&T(w) (29)

Observe that for (24) to hold it is necessary that R(8.) is
(i) If 0.(t) is a solution of (22), and if V.(0) = non- singular, or eqivalently

8(0),,2(0,8(0)) = x(O), then Vt E [0,0(1/)], 110(t) -
0o(t)ll = 0(-y) and lix(t) - x(t,8.(t))ll = 0(7,). op) > 0 (30)

(ii) Let the tuned parameter set be defined as those 9. E wen

Rne which satisfy This is the usual condition for 0.(t) to be persistently ex-
citing, sometimes referred to as the condition for uniform

avg{f(., 0., 0)) = 0 identifiability of the parameters.

Re )(A(8.)] < 0 (23) In the indirect case (2),(3)-(4), the expression for R(8.)

Then, for all small 7 > 0, there exists a unique almost is given by

periodic solution 9y(t), xy(t) of (1) with the following 8 p
properties: RC9.) = avg{¢.¢ + €.(HV.)T + 0. (9"))

(ii-a) s -f 0, -y~t -- 0. nd y~t)- z(t)(31)
(t-a) As 7f --* 0, 9.7(t) --* 9. and xr(t) --* z.(t) where H,,, Ho . are closed loop transfer functions defined
(4-b) 0.y(t), x:(t) ie uniformly asymptotically stable in the same sense as before. However, in the ideal indirect

(u.a.s.) if case, with no unmodeled dynamics, both H,. and H#
vanish. A derivation of the above expression and further

maxRei [R(9.)] > 0 (24) discussion can be found in Philips et al.(1987).

We also remark that for any adaptive system, the local

(it.c) 9 (t), x7 (t) is unstable if stability test matrix R(O) can be evaluated at any candidi-

max Re A[R(O.)] < 0 (25) ate value of 0, not just 0. as defined in Theorem 2. In this
case we can insure stability in a small neighborhhod of the
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candidate parameter value, provided that the adaptation performance measures. In addition, we still require slow
error c(t) is sufficiently small at the candidate parameter adaptation, which in itself is not too objectionable, per-
value, see, e.g., Anderson et al.(1986). haps only cautious, but again specific bounds on the adap-

tion gain extracted from the theory tend to be extremely
conservative. In the next section we show how it may be

Since for any square matrix M, we have the inequality posible to remedy some of these difficulties
Re (M) < (1/2)A(M + MT), it follows that a sufficient
condition for (24) to hold, with R(P.) given by (29), is that IV. FIXED POINT ANALYSIS

X {>( In this section we briefly discuss an alternative means
m~n (L $(we )ReH(i)) > 0 (32) for analyzing the adaptive system, which does not have

w fl to rely on averaging, We utilize the fixed-point theorem

This is the local stability condition first stated by Riedle of Banach and Cacciopoli, referred to as the contraction
and Kokotovic (1985), and referred to as a signal depen- mapping principal. (Actually, the adaptive system (1) can
dent positivity condition. To provide some interpretation, be analyzed by calling upon one of several fixed point the-
suppose that H,,(s) is stricly positive real (SPR),' orerns, Kosut and Bitmead (1986).]

Re H.,(jW) -a 6IHg,(jw)1 2 ,V E . (33) Following Bale (1969), let M be a subset of a Banach
space B with norm 1" 11. If r is an operator mapping

where 6 is a positive constant. Condition (32) is clearly M -, B, then r is a contraction on M if there is a constant
significantly less restrictive than the SPR condition (33), o E [0,1) such that
which restricts Re Ht,(jw) at each frequency, whereas (32)
is a weighted sum of each Re H,,(jw) contribution, hence jIr - ryll s iliz - y1i ,Vz, Y E M (34)

the terminology mentioned above. Local stability is as- The constant o is referred to as the contraction constant
sured as long as the contributions from those frequen- for r on Ml. A fized point of r : i-. m " is a point ( 4j
cies where ReH,(jw) < 0 are dominated by those where function) z E M such that z = rx. We can now state the
Re H.,(jw) > 0. Although (32) has a nice interpretation,
in light of (24) it is not necessary to be so conservative. Contraction Mapping Principal If M is a closed
In fact, it is easy to construct an example where (32) fails subset of a Banach space B and r : m --* m is a contrac-
but (24) holds nonetheless, tion on M, then r has a unique fixed point in M.

Transient Analysis Referring to (20), we can take r as the mapping of func-

An understanding of the transient properties of the tions 0(t) into functions i(t) defined implicitly as follows:

adaptive system requires answering the questions posed f(t, 0, ' (0)= 8(0) (35)
before, namely, determining the region of attraction to a
small neighborhood of the tuned system, and the rate of 1= A(0)! - yg(t, 0,1), 17(0) = 0 (36)

convergence. The following result, based on averaging, can Observe that fixed points of r' in M, i.e., those functions
be found in Anderson et al.(1986). 8 E M, which satisfy the operator equation

Theorem 3 Under the conditions stated in Theorem 2, = e (37)
if the initial parameter value 0. is strictly inside a convex
subset of the constant parameter stability set, then 8(t) will are solutions in M of the parameter trajectories of the
remain in that set and converge exponentially at a rate no adaptive system (20), or equivalently (1). For example,
slower than 0(7) to the u.a.s. almost periodic solution the results in Theorem 3 are arrived at by choosing
0.,(t) defined in Theorem .

Some of the restrictions can be relaxed, see, e.g., Riedle Al " {9 E C[0,oo) :119(t) -0.U < r. + r1 exp(-At)) (38)
and Kokotovic (1986) or Bodson et al.(1985). Specifically, where C[0, oo) is the Banach space of continuous bounded
the region of attraction can be relaxed to a compact subset functions, and r., ri, and X are positive constants.
of the constant parameter stability set; also, estimates of
the rate of convergence far from the tuned setting do not In the process of establishing that r is contractive on

have to be 0(7). M, we can utilize the method of averaging to establish
the stability, near B., of

These type of results are pleasing from an intuitive point
of view, thus providing a qualitative analysis. However,. = yf(t, , 0) (39)
they do not apply when the parameters leave the constant This is the origin of condition (24). It is important to
parameter stability set, nor do they provide quantitative point out that neither averaging nor small - is required

IThe SPR conditioni not just pulled out of the air, it arises as the to establish the stability of (39) near P.. For example, if
eendition to insure bouzdedness of the parameter estimates, provided the function f(t, 0, 0) is periodic in t uniformly for 0 in a
there are no unmodeled dynamics or disturbances, see, e.g., Narendra
et al.(1980). Essentially, the SPR condition forces the algorithm to compact set, then stability of (39) near 0. can be estab-
never move "uphill" when searching for the minimum. lished by linearization and Floquet Theory, Hale (1969).
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CONDITIONS FOR CONVERGENCE AND DIVERGENCE
OF

PARAMETER ADAPTIVE-LINEAR SYSTEMS

Robert L. Kosult*

Integrated Systems Inc.

101 University Ave.
Palo Alto, CA 94301

Abstract - A generic parameter adaptive system is equations, e.g., linearization, the method of averaging, and

proposed and analyzed for the case where the sys- Lyapunov second method, see, e.g., Halc(1069). The ma-

ten is linear time invariant whenever the paramne- terial in the text represents modifications and refinements

ters are held fixed. Conditions for local convergence of earlier work, specifically: Astrom (1983, 1984) showing

and divergence are obtained, how the method of averaging explains instabilities and drift;
Reidle and Kokotovic (1985, 1986) on slow adaptation and

the integral manifold; Kosut, Anderson, and Mareels(19S7)

on the relation between averaging and persistent excitation;

I. INTRODUCTION Bodson et al.(1986) on nonlinear averaging analysis and de-

Uncertainty underlies the reason for adaptation. Some termining the rate of convergence; and Kosut and Anderson

physical processes defy practical mathematical modeling, (1986), Kosut and Johnson(1984) on linearization and lo-

whereas others, with a well defined structure, have uncer- cal stability. Stochastic averaging methods have also been

tain parameters. In both of these instances it is often the employed to study the asymptotic parameter trajectories of

case that filtering, prediction, and control systems can be recursive parameter estimation algorithms in system iden-

designed with adjustable parameters which can be tuned so tification methods, e.g., Ljung and Soderstrom(1983).

as to accomadate the system uncertainty. Averaging: Uses and Limitations

At the present time we stand at the beginning stages in Although the method of averaging provides a great deal of

the development of theory which is directly applicable to insight into the behavior of adaptive systems, it is not a

adaptive systems. To cite one example, in the past few panacea. In the first place, the method of averaging re-

years there has been vigorous activity and debate on the quires slow adaptation which can be counter-productive in

question of the robustness of adaptive control, i.e., what some instances because performance can be below par for

happens when ideal conditions are violated, as would be the long period of time it takes for the parameters to adjust.

expected in practice. For example, simulations of simple Secondly, the results are valid only when the parameters

systems under apparently minor non-ideal conditions have are restricted to a subset of the constant parameter stabil-

shown degraded performance and even instabilities, e.g., ity set. Projection techniques can be employed to restrict

Rohrs et al.(19 85 ). Although the parameters as required, but in many practical cases

there is still not as yet a complete theory for the stability of this is not feasible nor even necessary, e.g., in output error

adaptive systems, many of the issues can now be addressed. system identification and adaptive control, momentary un-

In this paper we examine the stability of adaptive systems stable parameter settings can induce very rapid learning.

from the point of view of parameter convergence or diver- However, the exact mechanism is not well understood.

gence. We review and extend some of the results which Another area of concern when using the method of averag-

are contained in the recently published textbook by Ander- ing as an analysis tool, is that the speed of adaptation re-

son et al,(19S6). These results arise from the application quired to satisfy the theoretical conditions is most often far

of some of the classical methods for analyzing differential below that as determined from simulations. Thus, although

slow adaptation allows for an analysis which provides quan.

* This research supported partly by AFOSR con- titative measures of stability-instability boundaries, rate of

tracts F49620-S5-C-0004 and F49620-86-C-0100, and NSF convergence, and robustness to unmodeled effects, there are
grant ECS-8605646.



inherent restrictions in the analysis.

T2masient Analysis z

To remove these restrictions requires understanding the 'Plant y

transient behavior of adaptive systems. Some preliminary

results are reported in Kosut et a. (1987) and Kosut and

Bitznead (1986). The tools for analysis involve a combi- eaanee
nation of small gain theory, passivity, and the method of Adaptive

averaging, with these all linked together by the Contraction Algorthm

Mapping Principal. Some of these ideas will be described - a

and expanded upon here. Contrs-'n

Bey~ond Hand Calculations

Although each of these tools, in principal, involves straight- - _ __

forward calculations, even simple examples can just barely
be worked out by hand. It is clear that the level of com-

plexity of a realistic adaptive system is well beyond hand Figure 2-1. Parameter adaptive control

calculation. Hence, in order for any of the above mentioned
analytic methods to be of practical benifit, it is imperitve

to develop "user-friendly" software tools which provide the the other hand, we normally have a the simple design rule
requisite nonlinear analysis. 9 --- p. A more extensive display of how the various stan-
Atquithe sntie, aasi osi. dard adaptive identification and control systems fit into the
At the present time, aside from simulation capbility, there structure of Figure 2-1 is provided in Anderson et al.(1986).
are no available software tools for dealing principally with

adaptive systems, and certainly none for more general non- Parameter Adaptive Algoritm

linear systems. This is a research issue in both mathematics In order to illustrate the basic ideas, we will assume here

and computation, and it is one that is essential to a con. that the parameter adaptive algorithm is contiuously ad-

tinuing study of adaptive systems. This point will not be u d. In Practice, Parameter adjustments would be either

pursued here, but it is sometimes an overlooked research juste

issue, and thus warrents more than a passing remark. at discrete times or as in the case of adaptive control, the

control signal is the output of a digital computer.

We will also make the simplifying assumption that the plant

is linear-time-invariant with a rational proper transfer func-
II. LINEAR ADAPTIVE SYSTEMS tion, and for fixed values of the control parameter vector p,

Adaptive System Structure so is the block labled control. Then, the parameter adap-

The adaptive system we will examine is shown in Figure 2-1. tive system of Figure 2-1 may be described by the coupled

This system structure is valid for most parameter adaptive set of ordinary differential equations

filtering, prediction, and control systems, be they continu-

ouis, discrete, or hybrid (see, e.g., Kosut and Bitmead(19S6), * = A()z + B(9)w(t) (2.1)

Ljtwg and Soderstrom(1983)]. = fy(t)q(t, Z, )

In this system u(t) and y(t) are the vectors of measured

inputs and outputs, w(t) is a vector of exogenous inputs, where 0(t) E RP is the adaptive parameter, and z(t) E R"

i.e., references, disturbances, and noise sources. The vector is the system state, consisting of plant, controller, and filter

of adaptive parameters is 9(t) with initial value 0.. The states. The matrix functions A(8), B(O) are determined by

adaptive parameter vector is mappeG isito a "control" pa- the design rule 0 1-.+ p and the parametric controller struc-

rameter vector p(t) by some design rule, typically an im- ture. The nonlinear function 9(t, r, 0) is determined by the

plicitly defined memoryless nonlinear function - For exam- choice of algorithm, and -f(t) is the speed of adjustment,

pIe, in control system synthesis, one can use any number of often referred to as the adaptation gain. For example, with

model (parameter) based methods, see e.g., Safonov et al.( & simple gradient algorithm 1(t) = -, a positive constant,

1981) on LQG based designs or Vidyasagar(1985) on the whereas with a recursive least squares (RLS) type of algo-

stable factorization approach. In system identification, on rithm y(t) = 1/t. Most algorithms are never used in these
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simplified forms. Modifications include gain normalization, (1) How do the tuned parameters depend on the ex-
dead-zones, leakage, projection, and covariance resetting, ogenous inputs?
to name a few. The reasons for the modifications arise
from a priori knowlege of parameter ranges and the desire (2) Is the adaptive system stable in a neighborhood
to add some robustness to the algorithm. Obviously there . of the tuned system, i.e., are solutions (z, 0) sta-
are a myriad of possibilities. bie near (z.,0.)? Furthermore, how small is this

In general, adaptive algorithms share a similar genisis and - neighborhood?

purpose, namely to adjust 0(t) so that it asymptotically (3) What is the region of attraction in (z, 9) to a small

approaches a member of the set neighborhood of (z., 0.)?

(4) What is the rate of convergence to this small neigh-
borhood of (z., 9.)?

Jr .,, = 1{9 E RP : av&[2 ] is a minimum) (2.2) brodo z,0)r iuSome of these questions can be answered by the method of

where avg(.) is defined by averaging.

avg(X) = X(t) dt (2.3)
III. AVERAGING ANALYSIS

In the ideal case, the parametrization can be selected so as
to acheive what is called perfect matching, i.e., for some re- The classical method of averaging applies to a differential

stricted class of exogenous inputs (usually no disturbances), equation of the form

and a sufficient number of parameters such that there are
no unmodeled dynamics, the set Y,. has a single mern- -i = "yft yZ), 3Y > 0 (3.1)
ber such that c(t) = 0. Under more realistic conditions,
the best that can happen is that 0(t) asymptotically ap- where -y is a positive constant. If ' is sufficiently small then
proaches a small neighborhood of under suitable regularity conditions on f(t, z), the stabil-

ity of the time-varying system (3.1) is inherited from the

.7. = (8 E R P : avg[4] = 0) (2.4) stability of the simpler autonomous system

Iffr fixed 0, the regressor 0(t) is constructed to be identical ,'f-) (3.2)
with -De(t)/O6, then Y7. is the set of all local minima

of avg[r2]. Since Dr(t)/09 is a function of the true, but where
unknown plant, the regessor can at best be constructed
as an approximation. From a practical point of view it is f.(z) = avgf(-, x)
acceptable that the parameters approach and remain in a T (33)
small neighborhood of F7., provided that members of this =lim -If(t, z) dt
set also produce acceptable performance. T,-m T , d

The Tuned System This system is referred to as the averaged system. Observe

Assuming this is so, let 9. E R P denote such a setting, of that for f. (x) to exist, some other restrictions must also ap-

which there could be many. We refer to each 0. as a tuned ply to f(t, x), e.g., f(t, z) is almost periodic in t uniformly

Parameter and to the corresponding system for x in a compact set; although weaker conditions can be

stated.

i. = A(9.)z + B(9.)w(t) The above type of result is certainly expected on intuitive

c. = CTz. (2.5) grounds, provided that f(t, z) is smooth enough and the

=.- Dx. average value f,(x) exists. A precise formulation of the
stability-instability conditions is given in Theorem V.3.1,

as the tuned system [see, e.g., Kosut and Friedlander(1985)]. Hale(1969).
Clearly ( 2.5) is the same as system (2.1) but with 9(t) fixed In order to apply the above result to the adaptive system
at 0.. We can now pose the following questions regarding (2.1) it is first neccesary to make a transformation of eari-

the adaptive system (2.1): ables, so that the resulting system has the appropriate form



as expressed by (3.1). The transformation is re- Asymptotic Analysi

ferred to as a time-scale decomposition. The definition of the tuned system (x., 9.) as well as the

Time-Scale Decomposition stability of the adaptive system in the neighborhood of the

From the previous discussions about the origins of the adap- tuned system can be answered by Theorem 4.2 in Anderson

tive algorithm, we are clearly interested in the behavior of etal.(1986) or Section 3 in Bodson et =d.(1985). The flavor

the adaptive system in the neighborhood of the tuned sys- of these results can be stated as follows:

tern. But the tuned constant parameter setting 9. is not

known before hand. Hence, following the proceedures given Theorem I Let the tuned parameter set be defined a, those

in Anderson et al.(1986), we study the behavior of (2.1) in ho 1 L th tn med

the neighborhood of all constant parameter solutions. For

this purpose, let v(t, 9) denote the state z(t) when -y(t) = 0.

We refer to v(t, O) as the frozen parameter system state, or avg[f(.,.,) = 0(38)

frozen state for short. Hence, for each 0 E R P, Y(t,O) sat- Re A[A(0.)] < 0
isfies the partial differential equation

If the fnctions f(t, , 7) and g(t, O, ) are sufficiently smooth,

almost periodic in t uniformly for 9, q in compact sets, then

Dv/Ot = A(9)v + B(O)w(t) (3.4) for a sufficiently small adaptation gain -,, and a sufficiently

small peak value of the tuned error signal c.(t), solutions

By introducing the error state of (2.1) originating in a small neighborhood of the tuned

system (x.,0.) will remain there if

,7(t) = X(t) - ,,(t, 6(t)) (3.5)
naxRe.AijD(9.)] < 0 (3.9)

the (z, 0)-system of (2.1) can be transformed into the equiv- and, moreover, will leave there if

alent (Y7, 9)-system:

a = A(tJ(8uj > 0 (3.10)

= A(O)q - "7(t)g(t, 0 ,7) ,where the matrix function 0 1-4 B(8) is given by

where the functions f and g are given by a
B(8) 0 agf. , 0)] (3.11)

f~t, O, q) = g(v(t, 9) + ii) (3.7) In addition, under the conditions stated above, if (3.9) holds

g(t, , 17 ) = [OD(t, O)/O0f(t, ,7) then

The transformation of (2.1) into (3.6) is referred to as a

time-scale decomposition, because in general, 0(t) changes imsup 118(t) - 0.11 = O(lini sup lc.(t)I) + O(-y)

much more slowly than q(t). This is certainly the case $-Do ,-o (3.12)

whenever the adaptation gain, -y(t), is small. Observe that limsup 17(t)1 = 0()

when 7y(t) = l/t, there is always some time t. > 0 for t--0

which -7(t) is as small as necessary. But, whenever 0(t) is

near convergence, it is also changing slowly, and hence, we The type of smoothness conditions required of the functions

would expect the averaging results to apply even though f(t, 0, q) and 9(t, 0, q) is not severe, e.g., continuity in t and

the adaptation gain may not be small. We will return to Lipschitz continuity in 0, q for 0, q in compact sets.

this point later.
thor nowt leter. .aThe sharp stability-instability boundary expressed by (3.9)
For now, let s assue th the adaptation gain is con- and (3.10) allows not only for an assessment of a particular
stant, buit small, i.e., -7 (t) = "7 where " is a small positive design, but also indicates how to modify and improve the

number. Since the (q, 0)-system of (3.6) is equivalent to the algoritm.

original (z, )-system of (2.1), the answers to the questions

posed before will involve the analysis of (3.6). In particular, It is possible to obtain specific expressions for the right

the analysis can divided into answering questions about its hand sides of (3.12), but these are usually too coarse to

asymptotic and transient characteristics, be of practical quantitative value. In the next section we



will discuss the underlying method for obtaining the above Following Hale(190), let M be a subset of a Banach space

results and show that, in the first place, averaging is not B with norm if r is an operator mapping M --+ B,

necessary, and secondly the conservatism in the bounds can then r is a contraction or It' if there is a constant p E [0, 1)

be reduced significantly. First, however, we address the such that

transient characteristics.

Transient Analysis I1rx - ryll < Pali - yii ,Vx, y E M (4.1)

An understanding of the transient properties of the adap- The constant p is referred to as the contraction constant for

tive system requires answering the questions posed before, r on M . A fixed point of r : m -, M is a point ( function)

namely, determining the region of attraction to a small x E M such that x = rz. We can now state the

neighborhood of the tuned system, and the rate of con-

vergence. The folowing result, based oni averaging, can be Contraction Mapping Principal If M is a closed subset

found in Anderson et al.(19SG). of a Banach space B and r : m M-+ m is a contraction on
Md, then r has a unique fired point in MA.

Theorem 2 Under the conditions stated in Theorem 1, Refe n t (.) we can ta1 ue ath M p

if the initial parameter vale 9. is strictly inside a convex Referring to (3.G), we can take r as the mapping of func-

subset of the constant parameter stability set, then 8(t) will tions 6(t) into functions 0(t) defined implicitly as follows:

remain in that set and converge exponentially at a rate no

slower than O(y) to the small neighborhood of the tuned ( = 7 f(t,4,.t)

sistem defined in Theorem 1. J---A(9)l- -fg(t,0,

Observe that fixed points of r in M, i.e., those functions

Some of the restrictions can be relaxed, see, e.g., Riedle 0 E M which satisfy the operator equation

and Kokotovic(1986) or Bodson et al.(1985). Specifically,

the region of attraction can be relaxed to a compact subset

of the constant parameter stability set; also, estimates of a = r0 (4.3)

the rate of convergence far from the tuned setting do not

have to be 0(I). are solutions in M of the paramneter trajectories of the
adaptiv'e system (3.6), or equh'akently (2.]). For example,

These type of results are pleasing from an intuitive point the results (3.9)-(3.12) ae arrived at by ch)oosirg

of view, thus providing a qualitative analysis. However,

they do not apply when the parameters leave the constant
parameter stability set, nor do they provide quantitative

performance measures. In addition, we still require slow M = {E CIO, o) : 110(t) - 0.11 < r. + r, exp(-ut)) (4.4)

adaptation, which in itself is not too objectionable, per-

haps only cautious, but again specific bounds on the adap- where C[0, oo) is the Banach space of continuous bounded

tion gain extracted from the theory tend to be extremely functions, and r.,rl, and a are positive constants.

conservative. In the next section we show how it may bepossible to remedy some of these difficulties Ia the process of establishing that r is contractive on ,
we utilize the method of averaging to establish the stability,

near 9., of

IV. FIXED POINT ANALYSIS 0 f(t,0,0) (4.5)

Here we will descibe a general nonlinear analysis tool, namely

the fixed-point theorem of Banach and Cacciopoli, referred This is the origin of condition (3.9). It is important to

to as the contraction mapping principal.. Among other pos- point out that neither averaging nor small -1 is required to

sibilities, it enables one to compute the rate of convergence establish the stability of (4.5) near 9.. For example, if the

and region of attraction for the adaptive system. (Actually, function f(t, 0, 0) is periodic in t uniformly for 9 in a corn-

the adaptive system as represented by (3.6) can be analyzed pact set, then stability of (4.5) near 0. can be established

by calling upon one of several fixed point theorems, Kosut by linearization and Floquet Theory, Hale(1900). Condi-

and Bitmead(198().] tion (3.0) is then replaced by a weaker condition and the

limitation on the allowable size of the adaptation gain is
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considerably reduced over that imposed by averaging the- R.L. Kosut, "Floquet Anaysis of Adaptive Systerns"( 1987),

ory. Am early application of Floquet theory is reported ii, Fifth Yale Workshop on Applications of Adaptive Systemns

a paper by James (1071), although it wasn not carried over Theory, New Haven, CT, May 1987.

to the nonlinear adaptive system. R.LJNosut, I.M.Y.Mareels, B.D.O.Anderson, R.R.Bitmead,
ar~dC.R. Johnson, Jr., (1987),"Tranisient Analysis of Adap-
tive Control", to be presented at the IFA C, 10th World -

Congress, Munich, Germany, July 1987.

V. CONCLUDING REMARKS R.L. Rosut and R.R. Bitmead (1086), "Fixed Point Theo-

Wle have briefly described somec recent results, mostly con- reins for the Stability Analysis of Adaptive Systems", IFA C

tuned in Anderson et al.(IDSG), which pertain to the stabil- Workshop on Adaptive Control, AC-30:.834.

ity analysis of adaptive systems. As indicated, these results, R.L. Kosut and B.D.O. Anderson,(1986), "Local Stability

which are based on thc classical method of averaging, ca Analysis for a Class of Adaptive Systems". IEEE Mrans.

be extended to other than slcw adaptation by calling upon At.CnrJn 96

one of several fixed point theorems. Since the use of such R.L. Kosut and B. Friedlander (1085), "Robust Adaptive

results is well beyond hand calculation it is iinpcritive to Control: Conditions for Global Stability", IEEE Trans. on

develop the means to numerically establish the contraction Aut. Contr., AC-30(7):610-624.

conditions. Establishing such conditions can be viewed as R.L. Kosut and C.R. Johnson, Jr. (1084), "An Input-

a canonical prolem in anlzn the stability properties of Output View of Robustness in Adaptive Control", Auto-

adptive systems. Obscrve that because the contraction matica, 20(5)569-581.

analysis considers operators in Banach spaces, the same re- L. Liung and T. Soderstrom. (1983), Theory and Practice

suits apply to discrete-time or hybrid adaptive systems, i.e., of Recursive Identification, MIT Press.

any linear adaptive control of a linear plant. Extentions to B.D. Riedle and P.V. Kototovic (1986), "Integral Manifolds

adaptive nonlinear systems, although similar in principal o. 4,o App.36-32, April 1986. A otoVl 1

to the present analysis, often turn out to have their owiiN o4,p.362,Ari19.
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